최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal de mathématiques pures et appliquées, v.145, 2021년, pp.1 - 43
Kang, Moon-Jin
Abstract We study the L 2 -type contraction property of large perturbations around shock waves of scalar viscous conservation laws with strictly convex fluxes in one space dimension. The contraction holds up to a shift, and it is measured by a weighted relative entropy, for which we choose a...
Résumé Nous étudions une propriété de contraction de type L 2 pour des ondes de choc de lois de conservation visqueuses scalaires avec des flux strictement convexes en une dimension spatiale. Cette propriété de contraction permet l'étude de perturbations de grandes amplitudes. La contraction est vérifiée a une translation près, et utilise une entropie relative pondérée, pour laquelle on choisit une entropie appropriée associée au flux strictement convexe. La méthode considère des chocs de faible amplitude. Ce résultat améliore l'article récent de l'auteur et Vasseur sur la propriété de contraction L 2 des chocs de lois de conservation visqueuses scalaires pour des flux spéciaux, très proches du cas Burgers.
Acta Math. Sci. Amadori 32 259 2012 10.1016/S0252-9602(12)60016-2 The one-dimensional Hughes' model for pedestrian flow: Riemann-type solutions
Math. Models Methods Appl. Sci. Bellomo 12 1801 2002 10.1142/S0218202502002343 On the mathematical theory of vehicular traffic flow and fluid dynamic and kinetic modelling
SIAM Rev. Bellomo 53 409 2011 10.1137/090746677 On the modeling of traffic and crowds: a survey of models, speculations, and perspectives
Proc. Natl. Acad. Sci. Bertozzi 113 11384 2006 10.1073/pnas.1615158113 Designer shocks for carving out microscale surface morphologies
Phys. Rev. Lett. Bertozzi 81 5169 1998 10.1103/PhysRevLett.81.5169 Contact line stability and ‘undercompressive shocks’ in driven thin film flow
Math. Models Methods Appl. Sci. Carrillo 26 671 2016 10.1142/S0218202516500147 An improved version of the Hughes model for pedestrian flow
Math. Models Methods Appl. Sci. Choi 30 2 387 2020 10.1142/S0218202520500104 Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model
J. Math. Pures Appl. Choi 142 266 2020 10.1016/j.matpur.2020.03.002 Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model
SIAM J. Math. Anal. Choi 47 1405 2015 10.1137/140961523 Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method
Arch. Ration. Mech. Anal. Dafermos 70 2 167 1979 10.1007/BF00250353 The second law of thermodynamics and stability
Indiana Univ. Math. J. Dalibard 59 257 2010 10.1512/iumj.2010.59.3874 Long time behavior of parabolic scalar conservation laws with space periodic flux
J. Math. Pures Appl. Dalibard 107 3 336 2017 10.1016/j.matpur.2016.07.003 Existence and stability of planar shocks of viscous scalar conservation laws with space-periodic flux
J. Differ. Equ. Delle Monache 257 4015 2014 10.1016/j.jde.2014.07.014 Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result
J. Phys. A Gen. Phys. Gupta 38 4069 2005 10.1088/0305-4470/38/19/002 Analyses of shock waves and jams in traffic flow
Kinet. Relat. Models Kang 11 1 107 2018 10.3934/krm.2018006 Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics
J. Eur. Math. Soc. (JEMS) Kang 2020 10.4171/JEMS/1018 Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system
Arch. Ration. Mech. Anal. Kang 222 1 343 2016 10.1007/s00205-016-1003-1 Criteria on contractions for entropic discontinuities of systems of conservation laws
Ann. Inst. Henri Poincare (C): Anal. Non Lineaire Kang 34 1 139 2017 10.1016/j.anihpc.2015.10.004 L2-contraction for shock waves of scalar viscous conservation laws
Invent. Math. Kang 2020 10.1007/s00222-020-01004-2 Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems
J. Differ. Equ. Kang 267 2737 2019 10.1016/j.jde.2019.03.030 L2-contraction for planar shock waves of multi-dimensional scalar viscous conservation laws
J. Hyperbolic Differ. Equ. Krupa 16 1 157 2019 10.1142/S0219891619500061 Single entropy condition for Burgers equation via the relative entropy method
Mat. Sb. (N.S.) Krukov 81 123 228 1970 First order quasilinear equations with several independent variables
Arch. Ration. Mech. Anal. Leger 199 3 761 2011 10.1007/s00205-010-0341-7 L2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method
Proc. R. Soc. Lond. Ser. A Lighthill 229 317 1955 10.1098/rspa.1955.0089 On kinematic waves II: a theory of traffic flow on long, crowded roads
J. Ec. Polytech. Math. Serre 1 1 2014 10.5802/jep.1 L2-type contraction for systems of conservation laws
Discrete Contin. Dyn. Syst. Serre 36 8 4569 2016 10.3934/dcds.2016.36.4569 The relative entropy method for the stability of intermediate shock waves; the rich case
Vasseur 323 2008 Handbook of Differential Equations: Evolutionary Equations, vol. IV Recent results on hydrodynamic limits
Vasseur vol. 666 385 2016 Recent Advances in Partial Differential Equations and Applications Relative entropy and contraction for extremal shocks of conservation laws up to a shift
SIAM J. Math. Anal. Vasseur 47 6 4350 2015 10.1137/15M1023439 The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.