$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction

The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, v.124 no.50, 2020년, pp.10616 - 10623  

Na, Gyoung S. (Chemical Data-Driven Research Center , Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114 , Korea) ,  Jang, Seunghun (Chemical Data-Driven Research Center , Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114 , Korea) ,  Lee, Yea-Lee ,  Chang, Hyunju

Abstract AI-Helper 아이콘AI-Helper

The open-access material databases allowed us to approach scientific questions from a completely new perspective with machine learning methods. Here, on the basis of open-access databases, we focus on the classical band gap problem for predicting accurately the band gap of a crystalline compound usi...

참고문헌 (63)

  1. Sham, L. J., Schlüter, M.. Density-Functional Theory of the Energy Gap. Physical review letters, vol.51, no.20, 1888-1891.

  2. Sham, L. J., Schlüter, M.. Density-functional theory of the band gap. Physical review. B, Condensed matter, vol.32, no.6, 3883-3889.

  3. Electronic Structure: Basic Theory and Practical Methods Martin R. M. 2004 10.1017/CBO9780511805769 

  4. Fundamentals of Condensed Matter Physics Cohen M. L. 2016 10.1017/CBO9781139031783 

  5. Perdew, John P., Yang, Weitao, Burke, Kieron, Yang, Zenghui, Gross, Eberhard K. U., Scheffler, Matthias, Scuseria, Gustavo E., Henderson, Thomas M., Zhang, Igor Ying, Ruzsinszky, Adrienn, Peng, Haowei, Sun, Jianwei, Trushin, Egor, Gorling, Andreas. Understanding band gaps of solids in generalized Kohn–Sham theory. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.11, 2801-2806.

  6. Physics of Semiconductor Devices Sze S. M. 2006 10.1002/0470068329 

  7. Kohn, W., Sham, L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Physical review, vol.140, no.4, A1133-A1138.

  8. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  9. Perdew, John P., Levy, Mel. Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Physical review letters, vol.51, no.20, 1884-1887.

  10. Perdew, John P., Ernzerhof, Matthias, Burke, Kieron. Rationale for mixing exact exchange with density functional approximations. The Journal of chemical physics, vol.105, no.22, 9982-9985.

  11. Heyd, Jochen, Scuseria, Gustavo E., Ernzerhof, Matthias. Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics, vol.118, no.18, 8207-8215.

  12. Krukau, Aliaksandr V., Vydrov, Oleg A., Izmaylov, Artur F., Scuseria, Gustavo E.. Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of chemical physics, vol.125, no.22, 224106-.

  13. 10.1016/S0081-1947(08)60615-3 

  14. Hybertsen, Mark S., Louie, Steven G.. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical review. B, Condensed matter, vol.34, no.8, 5390-5413.

  15. Shirley, Eric L.. Self-consistentGWand higher-order calculations of electron states in metals. Physical review. B, Condensed matter, vol.54, no.11, 7758-7764.

  16. van Schilfgaarde, M., Kotani, Takao, Faleev, S.. Quasiparticle Self-Consistent $ GW$ Theory. Physical review letters, vol.96, no.22, 226402-.

  17. Kotani, Takao, van Schilfgaarde, Mark, Faleev, Sergey V.. Quasiparticle self-consistentGWmethod: A basis for the independent-particle approximation. Physical review. B, Condensed matter and materials physics, vol.76, no.16, 165106-.

  18. Tran, Fabien, Blaha, Peter. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical review letters, vol.102, no.22, 226401-.

  19. Chan, M. K. Y., Ceder, G.. Efficient Band Gap Prediction for Solids. Physical review letters, vol.105, no.19, 196403-.

  20. Sun, Jianwei, Remsing, Richard C., Zhang, Yubo, Sun, Zhaoru, Ruzsinszky, Adrienn, Peng, Haowei, Yang, Zenghui, Paul, Arpita, Waghmare, Umesh, Wu, Xifan, Klein, Michael L., Perdew, John P.. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nature chemistry, vol.8, no.9, 831-836.

  21. Gritsenko, Oleg, van Leeuwen, Robert, van Lenthe, Erik, Baerends, Evert Jan. Self-consistent approximation to the Kohn-Sham exchange potential. Physical review. A. Atomic, molecular, and optical physics, vol.51, no.3, 1944-1954.

  22. Crowley, Jason M., Tahir-Kheli, Jamil, Goddard, William A.. Resolution of the Band Gap Prediction Problem for Materials Design. The journal of physical chemistry letters, vol.7, no.7, 1198-1203.

  23. Xiao, Hai, Tahir-Kheli, Jamil, Goddard, William A.. Accurate Band Gaps for Semiconductors from Density Functional Theory. The journal of physical chemistry letters, vol.2, no.3, 212-217.

  24. Jain, Anubhav, Ong, Shyue Ping, Hautier, Geoffroy, Chen, Wei, Richards, William Davidson, Dacek, Stephen, Cholia, Shreyas, Gunter, Dan, Skinner, David, Ceder, Gerbrand, Persson, Kristin A.. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, vol.1, no.1, 011002-.

  25. Curtarolo, Stefano, Setyawan, Wahyu, Wang, Shidong, Xue, Junkai, Yang, Kesong, Taylor, Richard H., Nelson, Lance J., Hart, Gus L.W., Sanvito, Stefano, Buongiorno-Nardelli, Marco, Mingo, Natalio, Levy, Ohad. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Computational materials science, vol.58, 227-235.

  26. Saal, James E., Kirklin, Scott, Aykol, Muratahan, Meredig, Bryce, Wolverton, C.. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM : the journal of the Minerals, Metals & Materials Society, vol.65, no.11, 1501-1509.

  27. Landis, D. D., Hummelshøj, J. S., Nestorov, S., Greeley, J., Dułak, M., Bligaard, T., Nørskov, J. K., Jacobsen, K. W.. The Computational Materials Repository. Computing in science & engineering, vol.14, no.6, 51-57.

  28. Morales-García, Ángel, Valero, Rosendo, Illas, Francesc. An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.121, no.34, 18862-18866.

  29. Setyawan, Wahyu, Gaume, Romain M., Lam, Stephanie, Feigelson, Robert S., Curtarolo, Stefano. High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials. ACS combinatorial science, vol.13, no.4, 382-390.

  30. Ramakrishnan, Raghunathan, Dral, Pavlo O., Rupp, Matthias, von Lilienfeld, O. Anatole. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. Journal of chemical theory and computation, vol.11, no.5, 2087-2096.

  31. Lee, Joohwi, Seko, Atsuto, Shitara, Kazuki, Nakayama, Keita, Tanaka, Isao. Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Physical review. B, vol.93, no.11, 115104-.

  32. Gu, Tianhong, Lu, Wencong, Bao, Xinhua, Chen, Nianyi. Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors. Solid state sciences, vol.8, no.2, 129-136.

  33. Montavon, Grégoire, Rupp, Matthias, Gobre, Vivekanand, Vazquez-Mayagoitia, Alvaro, Hansen, Katja, Tkatchenko, Alexandre, Müller, Klaus-Robert, Anatole von Lilienfeld, O. Machine learning of molecular electronic properties in chemical compound space. New journal of physics, vol.15, no.9, 095003-.

  34. Pilania, G., Gubernatis, J.E., Lookman, T.. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Computational materials science, vol.129, 156-163.

  35. Rajan, Arunkumar Chitteth, Mishra, Avanish, Satsangi, Swanti, Vaish, Rishabh, Mizuseki, Hiroshi, Lee, Kwang-Ryeol, Singh, Abhishek K.. Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene. Chemistry of materials : a publication of the American Chemical Society, vol.30, no.12, 4031-4038.

  36. Dong, Yuan, Wu, Chuhan, Zhang, Chi, Liu, Yingda, Cheng, Jianlin, Lin, Jian. Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. Npj Computational materials, vol.5, no.1, 26-.

  37. Zhuo, Ya, Mansouri Tehrani, Aria, Brgoch, Jakoah. Predicting the Band Gaps of Inorganic Solids by Machine Learning. The journal of physical chemistry letters, vol.9, no.7, 1668-1673.

  38. Xie, Tian, Grossman, Jeffrey C.. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Physical review letters, vol.120, no.14, 145301-.

  39. 10.1109/IJCNN.2000.857823 Caruana, R.; Lawrence, S.; Giles, C. L. Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping , 2001; pp 402-408. 

  40. 10.1109/CVPR.2016.90 He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016. 

  41. Isayev, Olexandr, Oses, Corey, Toher, Cormac, Gossett, Eric, Curtarolo, Stefano, Tropsha, Alexander. Universal fragment descriptors for predicting properties of inorganic crystals. Nature communications, vol.8, 15679-.

  42. Ghiringhelli, Luca M., Vybiral, Jan, Levchenko, Sergey V., Draxl, Claudia, Scheffler, Matthias. Big Data of Materials Science: Critical Role of the Descriptor. Physical review letters, vol.114, no.10, 105503-.

  43. Wu, Zhenqin, Ramsundar, Bharath, Feinberg, Evan N., Gomes, Joseph, Geniesse, Caleb, Pappu, Aneesh S., Leswing, Karl, Pande, Vijay. MoleculeNet: a benchmark for molecular machine learning. Chemical science, vol.9, no.2, 513-530.

  44. Kipf, T. N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations (ICLR) , 2017. 

  45. Na, Gyoung S., Kim, Hyun Woo, Chang, Hyunju. Costless Performance Improvement in Machine Learning for Graph-Based Molecular Analysis. Journal of chemical information and modeling, vol.60, no.3, 1137-1145.

  46. Chen, Chi, Ye, Weike, Zuo, Yunxing, Zheng, Chen, Ong, Shyue Ping. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chemistry of materials : a publication of the American Chemical Society, vol.31, no.9, 3564-3572.

  47. Back, Seoin, Yoon, Junwoong, Tian, Nianhan, Zhong, Wen, Tran, Kevin, Ulissi, Zachary W.. Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts. The journal of physical chemistry letters, vol.10, 4401-4408.

  48. 10.1109/ITW.2016.7606789 Xu, A.; Raginsky, M. Information-theoretic analysis of generalization capability of learning algorithms , 2017. 

  49. Conference on Neural Information Processing Systems (NIPS) Krogh A. 950 1992 

  50. Cortes, C.; Mohri, M.; Rostamizadeh, A. L2 Regularization for Learning Kernels. Association for Uncertainty in Artificial Intelligence (UAI) , 2009. 

  51. Kim, Chiho, Huan, Tran Doan, Krishnan, Sridevi, Ramprasad, Rampi. A hybrid organic-inorganic perovskite dataset. Scientific data, vol.4, 170057-.

  52. Haastrup, Sten, Strange, Mikkel, Pandey, Mohnish, Deilmann, Thorsten, Schmidt, Per S, Hinsche, Nicki F, Gjerding, Morten N, Torelli, Daniele, Larsen, Peter M, Riis-Jensen, Anders C, Gath, Jakob, Jacobsen, Karsten W, Jørgen Mortensen, Jens, Olsen, Thomas, Thygesen, Kristian S. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2d materials, vol.5, no.4, 042002-.

  53. Castelli, Ivano E., Hüser, Falco, Pandey, Mohnish, Li, Hong, Thygesen, Kristian S., Seger, Brian, Jain, Anubhav, Persson, Kristin A., Ceder, Gerbrand, Jacobsen, Karsten W.. New Light‐Harvesting Materials Using Accurate and Efficient Bandgap Calculations. Advanced energy materials, vol.5, no.2, 1400915-.

  54. Kuisma, M., Ojanen, J., Enkovaara, J., Rantala, T. T.. Kohn-Sham potential with discontinuity for band gap materials. Physical review. B, Condensed matter and materials physics, vol.82, no.11, 115106-.

  55. https://xgboost.readthedocs.io. 

  56. Rothschild, Daphna, Weissbrod, Omer, Barkan, Elad, Kurilshikov, Alexander, Korem, Tal, Zeevi, David, Costea, Paul I., Godneva, Anastasia, Kalka, Iris N., Bar, Noam, Shilo, Smadar, Lador, Dar, Vila, Arnau Vich, Zmora, Niv, Pevsner-Fischer, Meirav, Israeli, David, Kosower, Noa, Malka, Gal, Wolf, Bat Chen, Avnit-Sagi, Tali, Lotan-Pompan, Maya, Weinberger, Adina, Halpern, Zamir, Carmi, Shai, Fu, Jingyuan, Wijmenga, Cisca, Zhernakova, Alexandra, Elinav, Eran, Segal, Eran. Environment dominates over host genetics in shaping human gut microbiota. Nature, vol.555, no.7695, 210-215.

  57. Chen, Xing, Huang, Li, Xie, Di, Zhao, Qi. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction. Cell death & disease, vol.9, no.1, 3-.

  58. Zhang, Dahai, Qian, Liyang, Mao, Baijin, Huang, Can, Huang, Bin, Si, Yulin. A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. IEEE access : practical research, open solutions, vol.6, 21020-21031.

  59. https://scikit-learn.org. 

  60. https://pytorch.org. 

  61. Murray, Éamonn D., Lee, Kyuho, Langreth, David C.. Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules. Journal of chemical theory and computation, vol.5, no.10, 2754-2762.

  62. Tran, Fabien, Ehsan, Sohaib, Blaha, Peter. Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement. Physical review materials, vol.2, no.2, 023802-.

  63. Neurips Allen-Zhu Z. 6158 2019 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로