$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Sensitive and Rapid Phenotyping of Microbes With Soluble Methane Monooxygenase Using a Droplet-Based Assay 원문보기

Frontiers in bioengineering and biotechnology, v.8, 2020년, pp.358 -   

Lee, Hyewon (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon , South Korea) ,  Baek, Ji In (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon , South Korea) ,  Kim, Su Jin (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon , South Korea) ,  Kwon, Kil Koang (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon , South Korea) ,  Rha, Eugene (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon , South Korea) ,  Yeom, Soo-Jin (Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology , Daejeon , South Korea South Kore) ,  Kim, Haseong ,  Lee, Dae-Hee ,  Kim, Dong-Myung ,  Lee, Seung-Goo

Abstract AI-Helper 아이콘AI-Helper

Methanotrophs with soluble methane monooxygenase (sMMO) show high potential for various ecological and biotechnological applications. Here, we developed a high throughput method to identify sMMO-producing microbes by integrating droplet microfluidics and a genetic circuit-based biosensor system. sMM...

Keyword

참고문헌 (56)

  1. Agresti J. J. Antipov E. Abate A. R. Ahn K. Rowat A. C. Baret J. C. ( 2010 ). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. U.S.A. 107 4004 ? 4009 . 10.1073/pnas.0910781107 20142500 

  2. Borodina E. Nichol T. Dumont M. G. Smith T. J. Murrell J. C. ( 2007 ). Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl. Environ. Microbiol. 73 6460 ? 6467 . 10.1128/aem.00823-07 17704278 

  3. Chistoserdova L. ( 2018 ). Applications of methylotrophs: can single carbon be harnessed for biotechnology? Curr. Opin. Biotechnol. 50 189 ? 194 . 10.1016/j.copbio.2018.01.012 29414059 

  4. Chistoserdova L. Kalyuzhnaya M. G. ( 2018 ). Current trends in methylotrophy. Trends Microbiol. 26 703 ? 714 . 10.1016/j.tim.2018.01.011 29471983 

  5. Choi S. L. Rha E. Lee S. J. Kim H. Kwon K. Jeong Y. S. ( 2014 ). Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth. Biol. 3 163 ? 171 . 10.1021/sb400112u 24295047 

  6. Collins M. L. Buchholz L. A. Remsen C. C. ( 1991 ). Effect of copper on Methylomonas albus BG8. Appl. Environ. Microbiol. 57 1261 ? 1264 . 10.1128/aem.57.4.1261-1264.1991 16348466 

  7. Conrado R. J. Gonzalez R. ( 2014 ). Chemistry. Envisioning the bioconversion of methane to liquid fuels. Science 343 621 ? 623 . 10.1126/science.1246929 24503844 

  8. Crombie A. Murrell J. C. ( 2011 ). Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol. 495 119 ? 133 . 10.1016/B978-0-12-386905-0.00008-5 21419918 

  9. Dassama L. M. Kenney G. E. Rosenzweig A. C. ( 2017 ). Methanobactins: from genome to function. Metallomics 9 7 ? 20 . 10.1039/c6mt00208k 27905614 

  10. de Almeida J. M. Alnoch R. C. De Souza E. M. Mitchell D. A. Krieger N. ( 2019 ). Metagenomics: is it a powerful tool to obtain lipases for application in biocatalysis? Biochim. Biophys. Acta Proteins Proteom. 1868 : 140320 . 10.1016/j.bbapap.2019.140320 31756433 

  11. Duarte J. M. Barbier I. Schaerli Y. ( 2017 ). Bacterial microcolonies in gel beads for high-throughput screening of libraries in synthetic biology. ACS Synth. Biol. 6 1988 ? 1995 . 10.1021/acssynbio.7b00111 28803463 

  12. Giuffrida M. C. Cigliana G. Spoto G. ( 2018 ). Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosens Bioelectron . 104 8 ? 14 . 10.1016/j.bios.2017.12.042 29294408 

  13. Graham D. W. Korich D. G. Leblanc R. P. Sinclair N. A. Arnold R. G. ( 1992 ). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl. Environ. Microbiol. 58 2231 ? 2236 . 10.1128/aem.58.7.2231-2236.1992 1637160 

  14. Grosse S. Laramee L. Wendlandt K. D. Mcdonald I. R. Miguez C. B. Kleber H. P. ( 1999 ). Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic Bacterium Methylocysitis sp. strain WI 14. Appl. Environ. Microbiol. 65 3929 ? 3935 . 10.1128/aem.65.9.3929-3935.1999 10473397 

  15. Guo M. T. Rotem A. Heyman J. A. Weitz D. A. ( 2012 ). Droplet microfluidics for high-throughput biological assays. Lab Chip 12 2146 ? 2155 . 10.1039/c2lc21147e 22318506 

  16. Hosokawa M. Hoshino Y. Nishikawa Y. Hirose T. Yoon D. H. Mori T. ( 2015 ). Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens Bioelectron. 67 379 ? 385 . 10.1016/j.bios.2014.08.059 25194237 

  17. Joensson H. N. Andersson Svahn H. ( 2012 ). Droplet microfluidics?a tool for single-cell analysis. Angew Chem. Int. Ed. Engl. 51 12176 ? 12192 . 10.1002/anie.201200460 23180509 

  18. Kalyuzhnaya M. G. Yang S. Rozova O. N. Smalley N. E. Clubb J. Lamb A. ( 2013 ). Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4 : 2785 . 10.1038/ncomms3785 24302011 

  19. Kaushik A. M. Hsieh K. Chen L. Shin D. J. Liao J. C. Wang T. H. ( 2017 ). Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens Bioelectron. 97 260 ? 266 . 10.1016/j.bios.2017.06.006 28609716 

  20. Kim S. K. Kim S. H. Subhadra B. Woo S. G. Rha E. Kim S. W. ( 2018 ). A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli . ACS Synth. Biol. 7 2379 ? 2390 . 10.1021/acssynbio.8b00164 30261142 

  21. Kim H. Kwon K. K. Seong W. Lee S. G. ( 2016a ). Multi-enzyme screening using a high-throughput genetic enzyme screening system. J. Vis. Exp. e54059, 1?7. 10.3791/54059 27584951 

  22. Kim H. Rha E. Seong W. Yeom S. J. Lee D. H. Lee S. G. ( 2016b ). A cell-cell communication-based screening system for novel microbes with target enzyme activities. ACS Synth. Biol. 5 1231 ? 1238 . 10.1021/acssynbio.5b00287 27452868 

  23. Lawton T. J. Rosenzweig A. C. ( 2016 ). Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. J. Am. Chem. Soc. 138 9327 ? 9340 . 10.1021/jacs.6b04568 27366961 

  24. Lee J. Y. Sung B. H. Oh S. H. Kwon K. K. Lee H. Kim H. ( 2019 ). C1 compound biosensors: design, functional study, and applications. Int. J. Mol. Sci. 20 : 2253 . 10.3390/ijms20092253 31067766 

  25. Leemhuis H. Kelly R. M. Dijkhuizen L. ( 2009 ). Directed evolution of enzymes: library screening strategies. IUBMB Life 61 222 ? 228 . 10.1002/iub.165 19180668 

  26. Lim H. G. Jang S. Jang S. Seo S. W. Jung G. Y. ( 2018 ). Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Curr. Opin. Biotechnol. 54 18 ? 25 . 10.1016/j.copbio.2018.01.011 29413747 

  27. Lloyd J. S. Finch R. Dalton H. Murrell J. C. ( 1999 ). Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. Microbiology 145(Pt 2) , 461 ? 470 . 10.1099/13500872-145-2-461 10075428 

  28. Meyer A. Pellaux R. Potot S. Becker K. Hohmann H. P. Panke S. ( 2015 ). Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat. Chem. 7 673 ? 678 . 10.1038/nchem.2301 26201745 

  29. Miller A. R. Keener W. K. Watwood M. E. Roberto F. F. ( 2002 ). A rapid fluorescence-based assay for detecting soluble methane monooxygenase. Appl. Microbiol. Biotechnol. 58 183 ? 188 . 10.1007/s00253-001-0885-4 11876411 

  30. Murrell J. C. Mcdonald I. R. Gilbert B. ( 2000 ). Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol. 8 221 ? 225 . 10.1016/s0966-842x(00)01739-x 10785638 

  31. Myung J. Kim M. Pan M. Criddle C. S. Tang S. K. ( 2016 ). Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresour. Technol. 207 302 ? 307 . 10.1016/j.biortech.2016.02.029 26896714 

  32. Ngara T. R. Zhang H. ( 2018 ). Recent advances in function-based metagenomic screening. Genomics Proteomics Bioinformatics. 6 405 ? 415 . 10.1016/j.gpb.2018.01.002 30597257 

  33. Nielsen A. K. Gerdes K. Degn H. Murrell J. C. ( 1996 ). Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Microbiology 142(Pt 5) , 1289 ? 1296 . 10.1099/13500872-142-5-1289 8704968 

  34. Puri A. W. Owen S. Chu F. Chavkin T. Beck D. A. Kalyuzhnaya M. G. ( 2015 ). Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense . Appl. Environ. Microbiol. 81 1775 ? 1781 . 10.1128/AEM.03795-14 25548049 

  35. Rohlhill J. Sandoval N. R. Papoutsakis E. T. ( 2017 ). Sort-Seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated Escherichia coli growth on methanol. ACS Synth. Biol. 6 1584 ? 1595 . 10.1021/acssynbio.7b00114 28463494 

  36. Ross M. O. Rosenzweig A. C. ( 2017 ). A tale of two methane monooxygenases. J. Biol. Inorg Chem. 22 307 ? 319 . 10.1007/s00775-016-1419-y 27878395 

  37. Schneider C. A. Rasband W. S. Eliceiri K. W. ( 2012 ). NIH image to imageJ: 25 years of image analysis. Nat. Methods 9 671 ? 675 . 10.1038/nmeth.2089 22930834 

  38. Selvamani V. Ganesh I. Maruthamuthu M. K. Eom G. T. Hong S. H. ( 2017 ). Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol. Biotechnol. Bioproce. Eng. 22 225 ? 230 . 10.4014/jmb.1611.11070 28372037 

  39. Semrau J. D. ( 2011 ). Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front. Microbiol. 2 : 209 . 10.3389/fmicb.2011.00209 22016748 

  40. Semrau J. D. Dispirito A. A. Yoon S. ( 2010 ). Methanotrophs and copper. FEMS Microbiol. Rev. 34 496 ? 531 . 10.1111/j.1574-6976.2010.00212.x 20236329 

  41. Shah N. N. Hanna M. L. Jackson K. J. Taylor R. T. ( 1995 ). Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen-driven soluble or particulate methane monooxygenase activity. Biotechnol. Bioeng. 45 229 ? 238 . 10.1002/bit.260450307 18623142 

  42. Shaofeng H. Shuben L. Jiayin X. Jianzhong N. Chungu X. Haidong T. ( 2007 ). Purification and biochemical characterization of soluble methane monooxygenase hydroxylase from Methylosinus trichosporium IMV 3011. Biosci. Biotechnol. Biochem. 71 122 ? 129 . 17213640 

  43. Shindell D. Kuylenstierna J. C. Vignati E. Van Dingenen R. Amann M. Klimont Z. ( 2012 ). Simultaneously mitigating near-term climate change and improving human health and food security. Science 335 183 ? 189 . 10.1126/science.1210026 22246768 

  44. Siedler S. Khatri N. K. Zsohar A. Kjaerbolling I. Vogt M. Hammar P. ( 2017 ). Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6 1860 ? 1869 . 10.1021/acssynbio.7b00009 28532147 

  45. Sirajuddin S. Rosenzweig A. C. ( 2015 ). Enzymatic oxidation of methane. Biochemistry 54 2283 ? 2294 . 10.1021/acs.biochem.5b00198 25806595 

  46. Smith T. J. Murrell J. C. ( 2011 ). Mutagenesis of soluble methane monooxygenase. Methods Enzymol. 495 135 ? 147 . 10.1016/B978-0-12-386905-0.00009-7 21419919 

  47. Strong P. J. Xie S. Clarke W. P. ( 2015 ). Methane as a resource: can the methanotrophs add value? Environ. Sci. Technol. 49 4001 ? 4018 . 10.1021/es504242n 25723373 

  48. Tapscott T. Guarnieri M. T. Henard C. A. ( 2019 ). Development of a CRISPR/Cas9 system for Methylococcus capsulatus in vivo gene editing. Appl. Environ. Microbiol. 85 : AEM.00340-19 . 10.1128/AEM.00340-19 30926729 

  49. Tavormina P. L. Kellermann M. Y. Antony C. P. Tocheva E. I. Dalleska N. F. Jensen A. J. ( 2017 ). Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti . Mol. Microbiol. 103 242 ? 252 . 10.1111/mmi.13553 27741568 

  50. Thorsen T. Roberts R. W. Arnold F. H. Quake S. R. ( 2001 ). Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86 4163 ? 4166 . 10.1103/physrevlett.86.4163 11328121 

  51. van der Helm E. Genee H. J. Sommer M. O. A. ( 2018 ). The evolving interface between synthetic biology and functional metagenomics. Nat. Chem. Biol. 14 752 ? 759 . 10.1038/s41589-018-0100-x 30013060 

  52. Wang Y. H. Wei K. Y. Smolke C. D. ( 2013 ). Synthetic biology: advancing the design of diverse genetic systems. Annu. Rev. Chem. Biomol. Eng. 4 69 ? 102 . 10.1146/annurev-chembioeng-061312-103351 23413816 

  53. West C. A. Salmond G. P. Dalton H. Murrell J. C. ( 1992 ). Functional expression in Escherichia coli of proteins B and C from soluble methane monooxygenase of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 138 1301 ? 1307 . 10.1099/00221287-138-7-1301 1512560 

  54. Whittenbury R. Phillips K. C. Wilkinson J. F. ( 1970 ). Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61 205 ? 218 . 10.1099/00221287-61-2-205 5476891 

  55. Yeom S. J. Kim M. Kwon K. K. Fu Y. Rha E. Park S. H. ( 2018 ). A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9 5053 . 10.1038/s41467-018-07488-0 30498220 

  56. Yu Z. Chistoserdova L. ( 2017 ). Communal metabolism of methane and the rare Earth element switch. J. Bacteriol. 199 : e0328-17 . 10.1128/JB.00328-17 28630125 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로