$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] In-Ear EEG Based Attention State Classification Using Echo State Network 원문보기

Brain sciences, v.10 no.6, 2020년, pp.321 -   

Jeong, Dong-Hwa (Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Jeong, Jaeseung (donghwa@kaist.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

It is important to maintain attention when carrying out significant daily-life tasks that require high levels of safety and efficiency. Since degradation of attention can sometimes have dire consequences, various brain activity measurement devices such as electroencephalography (EEG) systems have be...

Keyword

참고문헌 (66)

  1. 1. Mackworth N.H. The breakdown of vigilance during prolonged visual search Q. J. Exp. Psychol. 1948 1 6 21 10.1080/17470214808416738 

  2. 2. Helton W.S. Hollander T.D. Warm J.S. Tripp L.D. Parsons K. Matthews G. Dember W.N. Parasuraman R. Hancock P.A. The abbreviated vigilance task and cerebral hemodynamics J. Clin. Exp. Neuropsychol. 2007 29 545 552 10.1080/13803390600814757 17564919 

  3. 3. Warm J.S. Matthews G. Finomore V.S. Jr. Vigilance, Workload, and Stress Performance Under Stress CRC Press Boca Raton, FL, USA 2008 

  4. 4. Young M.S. Robinson S. Alberts P. Students pay attention!: Combating the vigilance decrement to improve learning during lectures Act. Learn. High. Educ. 2009 10 41 55 10.1177/1469787408100194 

  5. 5. Taylor-Phillips S. Elze M.C. Krupinski E.A. Dennick K. Gale A.G. Clarke A. Mello-Thoms C. Retrospective Review of the Drop in Observer Detection Performance Over Time in Lesion-enriched Experimental Studies J. Digit. Imaging 2014 28 32 40 10.1007/s10278-014-9717-9 25005866 

  6. 6. Atchley P. Chan M. Potential benefits and costs of concurrent task engagement to maintain vigilance: A driving simulator investigation Hum. Factors 2011 53 3 12 10.1177/0018720810391215 21469529 

  7. 7. Kamzanova A.T. Kustubayeva A.M. Matthews G. Use of EEG workload indices for diagnostic monitoring of vigilance decrement Hum. Factors 2014 56 1136 1149 10.1177/0018720814526617 25277022 

  8. 8. Clayton M.S. Yeung N. Cohen Kadosh R. The roles of cortical oscillations in sustained attention Trends Cogn. Sci. 2015 19 188 195 10.1016/j.tics.2015.02.004 25765608 

  9. 9. Looney B.D. Kidmose P. Park C. Ungstrup M. Rank M.L. Rosenkranz K. The in-the-ear recording concept: User-centered and wearable brain monitoring IEEE Pulse 2012 3 32 42 10.1109/MPUL.2012.2216717 23247157 

  10. 10. Hoon Lee J. Min Lee S. Jin Byeon H. Sook Hong J. Suk Park K. Lee S.-H. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording J. Neural Eng. 2014 11 046014 10.1088/1741-2560/11/4/046014 24963747 

  11. 11. Bleichner M.G. Lundbeck M. Selisky M. Minow F. Jager M. Emkes R. Debener S. De Vos M. Exploring miniaturized EEG electrodes for brain?computer interfaces. An EEG you do not see? Physiol. Rep. 2015 3 1 9 10.14814/phy2.12362 

  12. 12. Mikkelsen K.B. Kappel S.L. Mandic D.P. Kidmose P. EEG recorded from the ear: Characterizing the Ear-EEG Method Front. Neurosci. 2015 9 1 8 10.3389/fnins.2015.00438 25653585 

  13. 13. Goverdovsky V. Looney D. Kidmose P. Mandic D.P. In-Ear EEG from Viscoelastic Generic Earpieces: Robust and Unobtrusive 24/7 Monitoring IEEE Sens. J. 2016 16 271 277 10.1109/JSEN.2015.2471183 

  14. 14. Mikkelsen K.B. Kidmose P. Hansen L.K. On the Keyhole Hypothesis: High Mutual Information between Ear and Scalp EEG Front. Hum. Neurosci. 2017 11 1 9 10.3389/fnhum.2017.00341 28149275 

  15. 15. Kappel S.L. Looney D. Mandic D.P. Kidmose P. Physiological artifacts in scalp EEG and ear-EEG Biomed. Eng. Online 2017 16 103 10.1186/s12938-017-0391-2 28800744 

  16. 16. Kappel S.L. Rank M.L. Toft H.O. Andersen M. Kidmose P. Dry-Contact Electrode Ear-EEG IEEE Trans. Biomed. Eng. 2019 66 150 158 10.1109/TBME.2018.2835778 29993415 

  17. 17. Ahn J.W. Ku Y. Kim D.Y. Sohn J. Kim J.-H. Kim H.C. Wearable in-the-ear EEG system for SSVEP-based brain?computer interface Electron. Lett. 2018 54 413 414 10.1049/el.2017.3970 

  18. 18. Zibrandtsen I. Kidmose P. Otto M. Ibsen J. Kjaer T.W. Case comparison of sleep features from ear-EEG and scalp-EEG Sleep Sci. 2016 1 4 10.1016/j.slsci.2016.05.006 27217904 

  19. 19. Mikkelsen K.B. Villadsen D.B. Otto M. Kidmose P. Automatic sleep staging using ear-EEG Biomed. Eng. Online 2017 16 1 15 10.1186/s12938-017-0400-5 28086973 

  20. 20. Nakamura T. Goverdovsky V. Morrell M.J. Mandic D.P. Mandic D.P. Point-of-Care Technologies Automatic Sleep Monitoring Using Ear-EEG IEEE J. Transl. Eng. Health Med. 2017 5 1 8 10.1109/JTEHM.2017.2702558 

  21. 21. Fiedler L. Wostmann M. Graversen C. Brandmeyer A. Lunner T. Obleser J. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech J. Neural Eng. 2017 14 036020 10.1088/1741-2552/aa66dd 28384124 

  22. 22. Denk F. Grzybowski M. Ernst S.M.A. Kollmeier B. Debener S. Bleichner M.G. Event-Related Potentials Measured From In and Around the Ear Electrodes Integrated in a Live Hearing Device for Monitoring Sound Perception Trends Hear. 2018 22 1 14 10.1177/2331216518788219 30022733 

  23. 23. Christensen C.B. Kappel S.L. Kidmose P. Auditory Steady-State Responses across Chirp Repetition Rates for Ear-EEG and Scalp EEG Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Honolulu, HI, USA 18?21 July 2018 1376 1379 

  24. 24. Hong S. Kwon H. Choi S.H. Park K.S. Intelligent system for drowsiness recognition based on ear canal electroencephalography with photoplethysmography and electrocardiography Inf. Sci. 2018 453 302 322 10.1016/j.ins.2018.04.003 

  25. 25. Nakamura T. Alqurashi Y.D. Morrell M.J. Mandic D.P. Automatic detection of drowsiness using in-ear EEG Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN) Rio de Janeiro, Brazil 8?13 July 2018 2018 2018 1 6 

  26. 26. Kuatsjah E. Zhang X. Khoshnam M. Menon C. Two-channel in-ear EEG system for detection of visuomotor tracking state: A preliminary study Med. Eng. Phys. 2019 68 25 34 10.1016/j.medengphy.2019.03.016 30975632 

  27. 27. Athavipach C. Pan-Ngum S. Israsena P. A wearable in-ear EEG device for emotion monitoring Sensors 2019 19 1 16 10.3390/s19184014 

  28. 28. Prater A. Spatiotemporal signal classification via principal components of reservoir states Neural Netw. 2017 91 66 75 10.1016/j.neunet.2017.04.008 28499191 

  29. 29. Gong C. Tao D. Chang X. Yang J. Ensemble Teaching for Hybrid Label Propagation IEEE Trans. Cybern. 2019 49 388 402 10.1109/TCYB.2017.2773562 29990214 

  30. 30. Lacy S.E. Smith S.L. Lones M.A. Using echo state networks for classification: A case study in Parkinson’s disease diagnosis Artif. Intell. Med. 2018 86 53 59 10.1016/j.artmed.2018.02.002 29475631 

  31. 31. Yang C. Qiao J. Han H. Wang L. Design of polynomial echo state networks for time series prediction Neurocomputing 2018 290 148 160 10.1016/j.neucom.2018.02.036 

  32. 32. Sun L. Jin B. Yang H. Tong J. Liu C. Xiong H. Unsupervised EEG feature extraction based on echo state network Inf. Sci. 2019 475 1 17 10.1016/j.ins.2018.09.057 

  33. 33. Bozhkov L. Koprinkova-Hristova P. Georgieva P. Learning to decode human emotions with Echo State Networks Neural Netw. 2016 78 112 119 10.1016/j.neunet.2015.07.005 26422421 

  34. 34. Bozhkov L. Koprinkova-Hristova P. Georgieva P. Reservoir computing for emotion valence discrimination from EEG signals Neurocomputing 2017 231 28 40 10.1016/j.neucom.2016.03.108 

  35. 35. Kim H.H. Jeong J. Decoding electroencephalographic signals for direction in brain?computer interface using echo state network and Gaussian readouts Comput. Biol. Med. 2019 110 254 264 10.1016/j.compbiomed.2019.05.024 31233971 

  36. 36. Dinges D.F. Powell J.W. Microcomputer analyses of performance on sustained operations Behav. Res. Methods 1985 17 652 655 10.3758/BF03200977 

  37. 37. Eriksen B.A. Eriksen C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task Percep. Psychophys. 1974 16 143 149 10.3758/BF03203267 

  38. 38. Basner M. Dinges D.F. Maximizing sensitivity of the Psychomotor Vigilance Test (PVT) to sleep loss Sleep 2011 34 581 591 10.1093/sleep/34.5.581 21532951 

  39. 39. Sprajcer M. Jay S.M. Vincent G.E. Vakulin A. Lack L. Ferguson S.A. How the chance of missing the alarm during an on-call shift affects pre-bed anxiety, sleep and next day cognitive performance Biol. Psychol. 2018 137 133 139 10.1016/j.biopsycho.2018.07.008 30059707 

  40. 40. Hedge C. Powell G. Sumner P. The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences Behav. Res. Methods 2018 50 1166 1186 10.3758/s13428-017-0935-1 28726177 

  41. 41. Beaton L.E. Azma S. Marinkovic K. When the brain changes its mind: Oscillatory dynamics of conflict processing and response switching in a flanker task during alcohol challenge PLoS ONE 2018 13 1 24 10.1371/journal.pone.0191200 

  42. 42. Jaeger H. Haas H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication Science 2004 304 78 80 10.1126/science.1091277 15064413 

  43. 43. Farka? I. Bosak R. Gerge P. Computational analysis of memory capacity in echo state networks Neural Netw. 2016 83 109 120 10.1016/j.neunet.2016.07.012 27599031 

  44. 44. Oztuik M.C. Xu D. Principe J.C. Analysis and design of echo state networks Neural Comput. 2007 19 111 138 10.1162/neco.2007.19.1.111 17134319 

  45. 45. Cui H. Liu X. Li L. The architecture of dynamic reservoir in the echo state network Chaos 2012 22 10.1063/1.4746765 23020466 

  46. 46. Inubushi M. Yoshimura K. Reservoir Computing beyond Memory-Nonlinearity Trade-off Sci. Rep. 2017 7 1 10 10.1038/s41598-017-10257-6 28127051 

  47. 47. Dominey P.F. Biological Cybernetics on recurrent state representation and reinforcement learning J. Comp. Neurol. 1995 274 265 274 

  48. 48. Dominey P.F. Hoen M. Blanc J.M. Lelekov-Boissard T. Neurological basis of language and sequential cognition: Evidence from simulation, aphasia, and ERP studies Brain Lang. 2003 86 207 225 10.1016/S0093-934X(02)00529-1 12921765 

  49. 49. Dominey P.F. Hoen M. Inui T. A neurolinguistic model of grammatical construction processing J. Cogn. Neurosci. 2006 18 2088 2107 10.1162/jocn.2006.18.12.2088 17129193 

  50. 50. Jaeger H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks, GMD Report GMD―German National Research Institute for Computer Science Darmstadt, Germany 2001 Volume 148 

  51. 51. Jaeger H. Luko?eviius M. Popovici D. Siewert U. Optimization and applications of echo state networks with leaky- integrator neurons Neural Netw. 2007 20 335 352 10.1016/j.neunet.2007.04.016 17517495 

  52. 52. Luko?eviius M. Jaeger H. Reservoir computing approaches to recurrent neural network training Comput. Sci. Rev. 2009 3 127 149 10.1016/j.cosrev.2009.03.005 

  53. 53. Hermans M. Schrauwen B. Memory in Reservoirs for High Dimensional Input Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN) Barcelona, Spain 18?23 July 2010 1 7 

  54. 54. Verstraeten D. Schrauwen B. D’Haene M. Stroobandt D. An experimental unification of reservoir computing methods Neural Netw. 2007 20 391 403 10.1016/j.neunet.2007.04.003 17517492 

  55. 55. Gallicchio C. Micheli A. Pedrelli L. Deep reservoir computing: A critical experimental analysis Neurocomputing 2017 268 87 99 10.1016/j.neucom.2016.12.089 

  56. 56. Tikhonov A.N. Arsenin V.Y. Solutions of Ill-Posed Problems Winston and Sons Washington, DC, USA 1977 

  57. 57. Monastra V.J. Lynn S. Linden M. Lubar J.F. Gruzelier J. La Vaque T.J. Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder J. Neurother. 2006 9 5 34 10.1300/J184v09n04_02 

  58. 58. Schmeling A. Olze A. Reisinger W. Konig M. Geserick G. Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charite Proces. Leng. Nat. 2003 2 3 5 

  59. 59. Duchek J.M. Hunt L. Ball K. Buckles V. Morris J.C. Attention and Driving Performance in Alzheimer’s Disease J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 1998 53 130 141 10.1093/geronb/53B.2.P130 

  60. 60. Rapp M.A. Reischies F.M. Attention and executive control predict Alzheimer disease in late life: Results from the Berlin Aging Study (BASE) Am. J. Geriatr. Psychiatry 2005 13 134 141 10.1097/00019442-200502000-00007 15703322 

  61. 61. Pirzanski C. Berge B. Ear canal dynamics: Facts versus perception Hear. J. 2005 58 50 58 10.1097/01.HJ.0000285785.83490.6c 

  62. 62. Hastie T. Tibshirani R. Friedman J. The Elements of Statistical Learning Springer New York, NY, USA 2001 

  63. 63. Guo Y. Hastie T. Tibshirani R. Regularized linear discriminant analysis and its application in microarrays Biostatistics 2007 8 86 100 10.1093/biostatistics/kxj035 16603682 

  64. 64. Ho T.K. The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Mach. Intell. 1998 20 832 844 

  65. 65. Skurichina M. Duin R. Bagging, Boosting and the Random Subspace Method for Linear Classifiers Pattern Anal. Appl. 2002 5 121 135 10.1007/s100440200011 

  66. 66. Breiman L. Random Forests Mach. Learn. 2001 45 5 32 10.1023/A:1010933404324 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로