$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals 원문보기

Applied sciences, v.10 no.19, 2020년, pp.6791 -   

Yu, Jaehak (Department of KSB Convergence Research, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) ,  Park, Sejin (Department of KSB Convergence Research, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) ,  Kwon, Soon-Hyun (Department of KSB Convergence Research, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) ,  Ho, Chee Meng Benjamin (Department of KSB Convergence Research, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) ,  Pyo, Cheol-Sig (Department of KSB Convergence Research, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea) ,  Lee, Hansung (School of Computer Engineering, Youngsan University, 288 Junam-Ro, Yangsan, Gyeongnam 50510, Korea)

Abstract AI-Helper 아이콘AI-Helper

Stroke is a leading cause of disabilities in adults and the elderly which can result in numerous social or economic difficulties. If left untreated, stroke can lead to death. In most cases, patients with stroke have been observed to have abnormal bio-signals (i.e., ECG). Therefore, if individuals ar...

참고문헌 (55)

  1. Mohammadi Deep learning for IoT Big data and streaming analytics: A survey IEEE Commun. Surv. Tutor. 2018 10.1109/COMST.2018.2844341 20 2923 

  2. Ajayi Fourth industrial revolution for development: The relevance of Cloud federation in healthcare support IEEE Access 2019 10.1109/ACCESS.2019.2960615 7 185322 

  3. Morrar The fourth industrial revolution (Industry 4.0): A social innovation perspective Technol. Innov. Manag. Rev. 2017 10.22215/timreview/1117 7 12 

  4. Lopes, N.V.M. (2020). AI, IoT, Big data, and technologies in digital economy with blockchain at sustainable work satisfaction to smart mankind: Access to 6th dimension of human rights. Smart Governance for Cities: Perspectives and Experiences, Springer. [2nd ed.]. 

  5. Johnson Global, regional, and national burden of stroke, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016 Lancet Neurol. 2019 10.1016/S1474-4422(19)30034-1 18 439 

  6. Subudhi Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier Biocybern. Biomed. Eng. 2020 10.1016/j.bbe.2019.04.004 40 277 

  7. Lee Simple estimates of symptomatic intracranial hemorrhage risk and outcome after intravenous thrombolysis using age and stroke severity J. Stroke 2017 10.5853/jos.2016.01109 19 229 

  8. Kim Traditional risk factors for stroke in East Asia J. Stroke 2016 10.5853/jos.2016.00885 18 273 

  9. Poorthuis Female-and male-specific risk factors for stroke: A systematic review and meta-analysis JAMA Neurol. 2017 29 86 

  10. Malik Is atrial fibrillation a stroke risk factor or risk marker? An appraisal using the bradford hill framework for causality J. Heart Lung Circ. 2020 10.1016/j.hlc.2019.08.005 29 86 

  11. Centers for Disease Control and Prevention (2020, September 27). The Third National Health and Nutrition Examination Survey (NHANES III 1988-94) Reference Manuals and Reports, Available online: https://wwwn.cdc.gov/nchs/nhanes/nhanes3/ManualsAndReports.aspx. 

  12. Wolf Probability of stroke: A risk profile from the Framingham study Am. Heart Assoc. 1991 22 312 

  13. Belanger Stroke risk profile: Adjustment for antihypertensive medication: The Framingham Study Am. Heart Assoc. 1994 25 40 

  14. Hense Framingham risk function overestimates risk of coronary heart disease in men and women from Germany-results from the MONICA Augsburg and the RPOCAM cohorts Eur. Heart J. 2003 10.1016/S0195-668X(03)00081-2 24 937 

  15. Menotti Coronary heart disease incidence in northern and southern European populations: A reanalysis of the seven countries study for a European coronary risk chart Heart 2000 10.1136/heart.84.3.238 84 238 

  16. Liu Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese multi-provincial cohort study JAMA Netw. 2004 10.1001/jama.291.21.2591 291 2591 

  17. Jee Stroke risk prediction model: A risk profile from the Korean study Atherosclerosis 2008 10.1016/j.atherosclerosis.2007.05.014 197 318 

  18. 10.1109/PlatCon.2019.8668961 Yu, J., Kim, D., Park, H., Chon, S., Cho, K., Kim, S., Yu, S., Park, S., and Hong, S. (2019, January 28-30). Semantic Analysis of NIH stroke scale using machine learning techniques. Proceedings of the 2019 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea. 

  19. Zhang Acute ischaemic stroke prediction from physiological time series patterns Australas. Med. J. 2013 10.4066/AMJ.2013.1650 6 280 

  20. 10.1109/EMBC.2016.7591242 Sengupta, A., Rajan, V., Bhattacharya, S., and Sarma, G.R.K. (2016, January 16-20). A statistical model for stroke outcome prediction and treatment planning. Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA. 

  21. Statistics Korea (2020, September 27). The Cause of Death Statistics in Koreans. Available online: http://kostat.go.kr/portal/korea/kor_nw/1/6/2/index.board. 

  22. Bushnell Retrospective assessment of initial stroke severity: Comparison of the NIH stroke scale and the Canadian neurological scale J. Stroke 2001 10.1161/01.STR.32.3.656 32 656 

  23. Lai Prediction of functional outcome after stroke: Comparison of the orpington prognostic scale and the NIH stroke scale Am. Heart Assoc. 1998 29 1838 

  24. Meyer The modified National Institutes of Health Stroke Scale: Its time has come Int. J. Stroke 2009 10.1111/j.1747-4949.2009.00294.x 4 267 

  25. Lee Development of a stroke prediction model for Korean Korean Neurol. Assoc. 2010 28 13 

  26. 10.1136/bmj.324.7329.71 Trialists’ Collaboration Antithrombotic (2002). Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br. Med. J. (BMJ), 324, 71-86. 

  27. Kannel Latest perspectives on cigarette smoking and cardiovascular disease: The Framingham study J. Card. Rehabil. 1984 4 267 

  28. Carroll On the use and utility of the Weibull model in the analysis of survival data Control. Clin. Trials 2003 10.1016/S0197-2456(03)00072-2 24 682 

  29. Burn Long-term risk of recurrent stroke after a first-ever stroke Am. Heart Assoc. 1994 25 333 

  30. Lee Knowledge, health-promoting behaviors, and biological risks of recurrent stroke among stroke patients in Korea Jpn. J. Nurs. Sci. 2014 10.1111/jjns.12013 11 112 

  31. Finnigan EEG in ischaemic stroke: Quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management Clin. Neurophysiol. 2013 10.1016/j.clinph.2012.07.003 124 10 

  32. Chien Constructing the prediction model for the risk of stroke in a Chinese population: Report from a cohort study in Taiwan J. Stroke 2010 10.1161/STROKEAHA.110.586222 41 1858 

  33. Song Long sleep duration and risk of ischemic stroke and hemorrhagic stroke: The Kailuan prospective study Sci. Rep. 2016 10.1038/srep36861 6 1 

  34. Shanthi Designing an artificial neural network model for the prediction of thrombo-embolic stroke Int. J. Biom. Bioinform. (IJBB) 2009 3 10 

  35. Kasabov Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke Neurocomputing 2014 10.1016/j.neucom.2013.09.049 134 269 

  36. Singh, M.S., Choudhary, P., and Thongam, K. (2019, January 27-29). A Comparative Analysis for Various Stroke Prediction Techniques. Proceedings of the International Conference on Computer Vision and Image Processing (CVIP 2019), Jaipur, India. 

  37. Huang Artificial neural network prediction of ischemic tissue fate in acute stroke imaging J. Cereb. Blood Flow Metab. 2010 10.1038/jcbfm.2010.56 30 1661 

  38. Bentley Prediction of stroke thrombolysis outcome using CT brain machine learning NeuroImage Clin. 2014 10.1016/j.nicl.2014.02.003 4 635 

  39. 10.1145/1835804.1835830 Khosla, A., Cao, Y., Lin, C.C.Y., Chiu, H.K., Hu, J., and Lee, H. (2010, January 24-28). An integrated machine learning approach to stroke prediction. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA. 

  40. Amini Prediction and control of stroke by data mining Int. J. Prev. Med. 2013 4 245 

  41. Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv, Available online: https://arxiv.org/abs/1312.6026. 

  42. Hochreiter Long short-term memory Neural Comput. 1997 10.1162/neco.1997.9.8.1735 9 1735 

  43. Xiao Android malware detection based on system call sequences and LSTM Multimed. Tools Appl. 2019 10.1007/s11042-017-5104-0 78 3979 

  44. MathWorks, Inc. (2020, September 27). Long Short-Term Memory Networks. Available online: https://www.https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html. 

  45. Chantamit, P., and Goyal, M. (2018, January 15-19). Long short-term memory recurrent neural network for stroke prediction. Proceedings of the International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2018), New York, NY, USA. 

  46. WHO (2020, September 27). ICD-10: International Statistical Classification of Disease and Related Health Tenth Revision. Available online: https://www.who.int/classifications/icd/ICD-10_2nd_ed_volume2.pdf. 

  47. 10.1007/978-3-030-32251-9_20 Yu, Y., Parsi, B., Speier, W., Arnold, C., Lou, M., and Scalzo, F. (2019, January 13-17). LSTM Network for Prediction of Hemorrhagic Transformation in Acute Stroke. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2019), Shenzhen, China. 

  48. Klomp Design of a concise and comprehensive protocol for post stroke neuromechanical assessment J. Bioeng Biomed. Sci. 2012 S1 1 

  49. Schleenbaker Electromyographic biofeedback for neuromuscular reeducation in the hemiplegic stroke patient: A meta-analysis Arch. Phys. Med. Rehabil. 1993 10.1016/0003-9993(93)90083-M 74 1301 

  50. Pang A community-based fitness and mobility exercise program for older adults with chronic stroke: A randomized, controlled trial J. Am. Geriatr. Soc. 2005 10.1111/j.1532-5415.2005.53521.x 53 1667 

  51. Bohannon Accuracy of weightbearing estimation by stroke versus healthy subjects Percept. Mot. Ski. 1991 10.2466/pms.1991.72.3.935 73 935 

  52. Shao An EMG-driven model to estimate muscle forces and joint moments in stroke patients Comput. Biol. Med. 2009 10.1016/j.compbiomed.2009.09.002 39 1083 

  53. Geurts A review of standing balance recovery from stroke Gait Posture 2005 10.1016/j.gaitpost.2004.10.002 22 267 

  54. Hall, M. (1998). Correlation-based Feature Selection for Machine Learning. [Ph.D. Thesis, Department of Computer Science, The University of Waikato]. 

  55. Yu Real-time cooling load forecasting using a hierarchical multi-class SVDD Multimed. Tools Appl. 2014 10.1007/s11042-013-1412-1 71 293 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로