$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Identification of Metabolic Syndrome Based on Anthropometric, Blood and Spirometric Risk Factors Using Machine Learning 원문보기

Applied sciences, v.10 no.21, 2020년, pp.7741 -   

Kim, Sang Yeob (National Center for Standard Reference Data, Korea Research Institute of Standards and Science, Daejeon 34113, Korea) ,  Nam, Gyeong Hee (National Center for Standard Reference Data, Korea Research Institute of Standards and Science, Daejeon 34113, Korea) ,  Heo, Byeong Mun (Division of Epidemiology and Health Index, Center for Genome Science, Korea National Institute of Health, Cheongju 28159, Korea)

Abstract AI-Helper 아이콘AI-Helper

Metabolic syndrome (MS) is an aggregation of coexisting conditions that can indicate an individual’s high risk of major diseases, including cardiovascular disease, stroke, cancer, and type 2 diabetes. We conducted a cross-sectional survey to evaluate potential risk factor indicators by identif...

참고문헌 (47)

  1. Cameron The metabolic syndrome: Prevalence in worldwide populations Endocrinol. Metab. Clin. N. Am. 2004 10.1016/j.ecl.2004.03.005 33 351 

  2. Wilson Cardiometabolic risk: A Framingham perspective Int. J. Obes. 2008 10.1038/ijo.2008.30 32 S17 

  3. Stocks Blood pressure and risk of cancer incidence and mortality in the Metabolic Syndrome and Cancer Project Hypertension 2012 10.1161/HYPERTENSIONAHA.111.189258 59 802 

  4. Sacco Metabolic syndrome and ischemic stroke risk Stroke 2008 10.1161/STROKEAHA.107.496588 39 30 

  5. (2020, August 21). Korea Center for Disease Control and Prevention. Available online: http://www.cdc.go.kr/. 

  6. (2020, August 21). Statistics Research Institute. Available online: http://kostat.go.kr/sri/srikor/index.action. 

  7. Harhay Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010 J. Am. Coll. Cardiol. 2013 10.1016/j.jacc.2013.05.064 62 697 

  8. 10.1186/s12889-017-4041-1 Ranasinghe, P., Mathangasinghe, Y., Jayawardena, R., Hills, A.P., and Misra, A. (2017). Prevalence and trends of metabolic syndrome among adults in the Asia-Pacific region: A systematic review. BMC Public Health, 17. 

  9. Mannino Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD Eur. Respir. J. 2008 10.1183/09031936.00012408 32 962 

  10. Schroeder Lung function and incident coronary heart disease: The Atherosclerosis Risk in Communities Study Am. J. Epidemiol. 2003 10.1093/aje/kwg276 158 1171 

  11. Hedblad Increased incidence of myocardial infarction and stroke in hypertensive men with reduced lung function J. Hypertens. 2001 10.1097/00004872-200102000-00017 19 295 

  12. Sagun Application of alternative anthropometric measurements to predict metabolic syndrome Clinics 2014 10.6061/clinics/2014(05)09 69 347 

  13. Mooney Comparison of anthropometric and body composition measures as predictors of components of the metabolic syndrome in a clinical setting Obes. Res. Clin. Pract. 2013 10.1016/j.orcp.2012.10.004 7 e55 

  14. Hsieh Metabolic syndrome in Japanese men and women with special reference to the anthropometric criteria for the assessment of obesity: Proposal to use the waist-to-height ratio Prev. Med. 2006 10.1016/j.ypmed.2005.08.007 42 135 

  15. Shen Waist circumference correlates with metabolic syndrome indicators better than percentage fat Obesity 2006 10.1038/oby.2006.83 14 727 

  16. Waist-to-height ratio is a better anthropometric index than waist circumference and BMI in predicting metabolic syndrome among obese Mexican adolescents Int. J. Endocrinol. 2014 10.1155/2014/195407 2014 1 

  17. Katzmarzyk Metabolic syndrome, obesity, and mortality: Impact of cardiorespiratory fitness Diabetes Care 2005 10.2337/diacare.28.2.391 28 391 

  18. Williams A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome Br. J. Nutr. 2000 10.1017/S0007114500000337 83 257 

  19. Lao White blood cell count and the metabolic syndrome in older Chinese: The Guangzhou Biobank Cohort Study Atherosclerosis 2008 10.1016/j.atherosclerosis.2007.12.053 201 418 

  20. Funakoshi Association between airflow obstruction and the metabolic syndrome or its components in Japanese men Intern. Med. 2010 10.2169/internalmedicine.49.3882 49 2093 

  21. McDevitt Macronutrient disposal during controlled overfeeding with glucose, fructose, sucrose, or fat in lean and obese women Am. J. Clin. Nutr. 2000 10.1093/ajcn/72.2.369 72 369 

  22. Paek Association between low pulmonary function and metabolic risk factors in Korean adults: The Korean National Health and Nutrition Survey Metabolism 2010 10.1016/j.metabol.2009.12.005 59 1300 

  23. Park Chronic obstructive pulmonary disease and metabolic syndrome: A nationwide survey in Korea Int. J. Tuberc. Lung Dis. 2012 10.5588/ijtld.11.0180 16 694 

  24. Lin Impaired lung function is associated with obesity and metabolic syndrome in adults Obesity 2006 10.1038/oby.2006.190 14 1654 

  25. 10.1371/journal.pone.0233678 Wulczyn, E., Steiner, D.F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C.H., Chen, P.-H.C., Liu, Y., and Stumpe, M.C. (2020). Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE, 15. 

  26. Kopp Deep learning for genomics using Janggu Nat. Commun. 2020 10.1038/s41467-020-17155-y 11 1 

  27. 10.1371/journal.pone.0235487 Sonogashira, M., Shonai, M., and Iiyama, M. (2020). High-resolution bathymetry by deep-learning-based image superresolution. PLoS ONE, 15. 

  28. 10.3390/ijerph17186513 Davagdorj, K., Pham, V.H., Theera-Umpon, N., and Ryu, K.H. (2020). XGBoost-based framework for smoking-induced noncommunicable disease prediction. Int. J. Environ. Res. Public Health, 17. 

  29. 10.1016/j.knosys.2020.105534 Munkhdalai, L., Munkhdalai, T., and Ryu, K.H. (2020). GEV-NN: A deep neural network architecture for class imbalance problem in binary classification. Knowl. Based Syst., 105534. 

  30. 10.3390/app10093307 Davagdorj, K., Lee, J.S., Pham, V.H., and Ryu, K.H. (2020). A comparative analysis of machine learning methods for class imbalance in a smoking cessation intervention. Appl. Sci., 10. 

  31. 10.1371/journal.pone.0225991 Amarbayasgalan, T., Park, K.H., Lee, J.Y., and Ryu, K.H. (2019). Reconstruction error based deep neural networks for coronary heart disease risk prediction. PLoS ONE, 14. 

  32. 10.3390/ijerph16193628 Batbaatar, E., and Ryu, K.H. (2019). Ontology-based healthcare named entity recognition from Twitter messages using a recurrent neural network approach. Int. J. Environ. Res. Public Health, 16. 

  33. Ryu Risk scoring system for prognosis estimation of multivessel disease among patients with ST-segment elevation myocardial infarction Int. Hear. J. 2019 10.1536/ihj.17-337 60 708 

  34. 10.3390/ijerph15112571 Heo, B.M., and Ryu, K.H. (2018). Prediction of prehypertension and hypertension based on anthropometry, blood parameters, and spirometry. Int. J. Environ. Res. Public Health, 15. 

  35. Piao Multiclass cancer classification using a feature subset-based ensemble from microRNA expression profiles Comput. Biol. Med. 2017 10.1016/j.compbiomed.2016.11.008 80 39 

  36. 10.3390/sym8060047 Kim, H., Ishag, M.I.M., Piao, M., Kwon, T., and Ryu, K.H. (2016). A data mining approach for cardiovascular disease diagnosis using heart rate variability and images of carotid arteries. Symmetry, 8. 

  37. Ryu Comparison of clinical outcomes between culprit vessel only and multivessel percutaneous coronary intervention for ST-segment elevation myocardial infarction patients with multivessel coronary diseases J. Geriatr. Cardiol. 2015 12 208 

  38. Choe Metabolic Syndrome Prediction Using Machine Learning Models with Genetic and Clinical Information from a Nonobese Healthy Population Genom. Inform. 2018 10.5808/GI.2018.16.4.e31 16 e31 

  39. (2020, January 20). Korea Centers for Disease Control and Prevention: Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.cdc.go.kr/knhanes/eng/index.do. 

  40. Ministry of Health and Welfare of Korea, and Korea Centers for Disease Control and Prevention (2012). The Fifth Korea National Health and Nutrition Examination Survey Data User Guide (KNHANES V) 2010-2012, Korea Centers for Disease Control and Prevention Press. 

  41. Ministry of Health and Welfare of Korea, and Korea Centers for Disease Control and Prevention (2015). The Sixth Korea National Health and Nutrition Examination Survey Data User Guide (KNHANES VI) 2013-2015, Korea Centers for Disease Control and Prevention Press. 

  42. Grundy Diagnosis and Management of the Metabolic Syndrome Circulation 2005 10.1161/CIRCULATIONAHA.105.169404 112 2735 

  43. Saeys A review of feature selection techniques in bioinformatics Bioinformatics 2007 10.1093/bioinformatics/btm344 23 2507 

  44. (2020, September 01). Statistics Korea Web Sites. Available online: http://kostat.go.kr. 

  45. 10.3390/app10093046 Kim, S.Y., and Nam, G.H. (2020). Assessment of Anthropometric and Body Composition Risk Factors in Patients with both Hypertension and Stroke in the Korean Population. Appl. Sci., 10. 

  46. Kohavi, R. (1995, January 20-25). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), Montreal, QC, Canada. 

  47. Kopitar Early detection of type 2 diabetes mellitus using machine learning-based prediction models Sci. Rep. 2020 10.1038/s41598-020-68771-z 10 11981 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로