$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Interfacial Shearing Behavior along Xanthan Gum Biopolymer-Treated Sand and Solid Interfaces and Its Meaning in Geotechnical Engineering Aspects 원문보기

Applied sciences, v.11 no.1, 2021년, pp.139 -   

Lee, Minhyeong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Im, Jooyoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Ryu, Hee Hwan (KEPCO Research Institute, Korea Electric Power Corporation (KEPCO), Daejeon 34056, Korea) ,  Chang, Ilhan (Department of Civil Systems Engineering, Ajou University, Suwon-si 16499, Korea)

Abstract AI-Helper 아이콘AI-Helper

Recently, environment-friendly microbial biopolymer has been widely applied as a new construction material in geotechnical engineering practices including soil stabilization, slope protection, and ground injection. Biopolymer is known to exhibit substantial improvements in geotechnical properties, s...

참고문헌 (47)

  1. Han Effects of interface roughness, particle geometry, and gradation on the sand-steel interface friction angle J. Geotech. Geoenviron. Eng. 2018 10.1061/(ASCE)GT.1943-5606.0001990 144 04018096 

  2. Potyondy Skin friction between various soils and construction materials Geotechnique 1961 10.1680/geot.1961.11.4.339 11 339 

  3. Yoshimi A ring torsion apparatus for evaluating friction between soil and metal surfaces Geotech. Test. J. 1981 10.1520/GTJ10783J 4 145 

  4. Uesugi Behavior of sand particles in sand-steel friction Soils Found. 1988 10.3208/sandf1972.28.107 28 107 

  5. Dove Peak friction behavior of smooth geomembrane-particle interfaces J. Geotech. Geoenviron. Eng. 1999 10.1061/(ASCE)1090-0241(1999)125:7(544) 125 544 

  6. Frost Shear failure behavior of granular-continuum interfaces Eng. Fract. Mech. 2002 10.1016/S0013-7944(02)00075-9 69 2029 

  7. Hebeler, G.L. (2005). Multi-Scale Behavior at Geomaterial Interfaces. [Ph.D. Thesis, Georgia Institute of Technology]. 

  8. 10.1533/9780857090638.1.28 Tinjum, J., and Christensen, R. (2011). Site investigation, characterization and assessment for wind turbine design and construction. Wind Energy Systems, Woodhead Publishing. 

  9. Das, B.M. (2016). Principles of Foundation Engineering, Cengage Learning. [8th ed.]. 

  10. 10.3390/en12132567 Chang, I., Lee, M., and Cho, G.-C. (2019). Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering. Energies, 12. 

  11. Chang Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices Transp. Geotech. 2020 10.1016/j.trgeo.2020.100385 24 100385 

  12. 10.3390/su8030251 Chang, I., Im, J., and Cho, G.C. (2016). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8. 

  13. Chang Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer Constr. Build. Mater. 2012 10.1016/j.conbuildmat.2011.11.030 30 30 

  14. Chang Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay Acta Geotech. 2019 10.1007/s11440-018-0641-x 14 361 

  15. Cabalar Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand Soil Mech. Found. Eng. 2017 10.1007/s11204-017-9481-1 54 356 

  16. Chang Effects of xanthan gum biopolymer on soil strengthening Constr. Build. Mater. 2015 10.1016/j.conbuildmat.2014.10.026 74 65 

  17. Chang Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries Int. J. Polym. Sci. 2015 10.1155/2015/326745 2015 326745 

  18. Lee Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands Geomech. Eng. 2019 17 445 

  19. Tran, A.T.P., Chang, I., and Cho, G.-C. (2019). Wetting soil-water characteristics of xanthan gum biopolymer-treated soils. Can. Geotech. J., under review. 

  20. Kwon Surface-erosion behaviour of biopolymer-treated soils assessed by EFA Géotechnique Lett. 2020 10.1680/jgele.19.00106 10 1 

  21. Lee Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing Geomech. Eng. 2017 10.12989/gae.2017.12.5.831 12 831 

  22. Chang Geotechnical engineering behaviors of gellan gum biopolymer treated sand Can. Geotech. J. 2016 10.1139/cgj-2015-0475 53 1658 

  23. Chen The drying effect on xanthan gum biopolymer treated sandy soil shear strength Constr. Build. Mater. 2019 10.1016/j.conbuildmat.2018.11.120 197 271 

  24. Fatehi A novel study on using protein based biopolymers in soil strengthening Constr. Build. Mater. 2018 10.1016/j.conbuildmat.2018.02.028 167 813 

  25. Zhong Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation J. Hazard. Mater. 2013 10.1016/j.jhazmat.2012.11.028 244 160 

  26. Santos Xanthan gum: Production, recovery, and properties Biotechnol. Adv. 2000 10.1016/S0734-9750(00)00050-1 18 549 

  27. Fowmes Rapid prototyping of geosynthetic interfaces: Investigation of peak strength using direct shear tests Geotext. Geomembr. 2017 10.1016/j.geotexmem.2017.08.009 45 674 

  28. 10.1007/978-3-030-39299-4_6 Cislaghi, A., Sala, P., Borgonovo, G., Gandolfi, C., and Bischetti, G.B. (2020). Biodegradable Geosynthetics for Geotechnical and Geo-Environmental Engineering, Springer. 

  29. Chu Comparison of interface shear strength of soil nails measured by both direct shear box tests and pullout tests J. Geotech. Geoenviron. Eng. 2005 10.1061/(ASCE)1090-0241(2005)131:9(1097) 131 1097 

  30. Kishida Tests of the interface between sand and steel in the simple shear apparatus Géotechnique 1987 10.1680/geot.1987.37.1.45 37 45 

  31. Farhadi Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces Soils Found. 2017 10.1016/j.sandf.2017.01.008 57 111 

  32. Tehrani Laboratory study of the effect of pile surface roughness on the response of soil and non-displacement piles Geotech. Front. 2017 2017 256 

  33. Ferrari Experimental investigations of the soil-concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures Can. Geotech. J. 2016 10.1139/cgj-2015-0294 53 659 

  34. Feng Analysis of sand-woven geotextile interface shear behavior using discrete element method (DEM) Can. Geotech. J. 2020 10.1139/cgj-2018-0703 57 433 

  35. Lings The peak strength of sand-steel interfaces and the role of dilation Soils Found. 2005 10.3208/sandf.45.1 45 1 

  36. 10.1007/978-3-7091-1068-3_10 Randolph, M.F. (2012). Cyclic interface shearing in sand and cemented soils and application to axial response of piles. Mechanical Behaviour of Soils under Environmentally Induced Cyclic Loads, Springer. 

  37. Dove Behavior of dilative sand interfaces in a geotribology framework J. Geotech. Geoenviron. Eng. 2002 10.1061/(ASCE)1090-0241(2002)128:1(25) 128 25 

  38. Wei New design chart for geotechnical ground improvement: Characterizing cement-stabilized sand Acta Geotech. 2020 10.1007/s11440-019-00838-2 15 999 

  39. Wei Microscale analysis to characterize effects of water content on the strength of cement-stabilized sand-clay mixtures Acta Geotech. 2020 10.1007/s11440-020-01018-3 15 2905 

  40. Chen, C., Wu, L., and Harbottle, M. (2019). Exploring the effect of biopolymers in near-surface soils using xanthan gum-modified sand under shear. Can. Geotech. J., 1-10. 

  41. ASTM (2011). D3080/D3080M-11: Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions, ASTM International. 

  42. Stokes Lubrication, adsorption, and rheology of aqueous polysaccharide solutions Langmuir 2011 10.1021/la104040d 27 3474 

  43. Mitchell, J.K., and Soga, K. (2005). Fundamentals of soil Behavior, John Wiley & Sons. [3rd ed.]. 

  44. Mitchell Reinforcement of earth slopes and embankments Nchrp Rep. 1987 6 290 

  45. Williams, N., and Houlihan, M. (1987, January 24). Evaluation of Interface Friction Properties between Geosynthetics and Soils. Proceedings of the Geosynthetics, New Orleans, LA, USA. 

  46. Jewell, R. (1996). Soil Reinforcement with Geotextiles, Construction Industry Research and Information Association. 

  47. Puri The friction coefficient of cohesive soils and geotextile: An approach based on the direct shear test data Jurnal Saintis 2017 17 33 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로