$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Pt Nanostructures Fabricated by Local Hydrothermal Synthesis for Low-Power Catalytic-Combustion Hydrogen Sensors

ACS applied nano materials, v.4 no.1, 2021년, pp.7 - 12  

Del Orbe Henriquez, Dionisio (Department of Mechanical Engineering , KAIST , Daejeon 34141 , Republic of Korea) ,  Cho, Incheol (Department of Mechanical Engineering , KAIST , Daejeon 34141 , Republic of Korea) ,  Yang, Hyunwoo (Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea) ,  Choi, Jungrak (Department of Mechanical Engineering , KAIST , Daejeon 34141 , Republic of Korea) ,  Kang, Mingu (Department of Mechanical Engineering , KAIST , Daejeon 34141 , Republic of Korea) ,  Chang, Ki Soo (Center for Scientific Instrumentation , Korea Basic Science Institute , Daejeon 34133 , Republic of Korea) ,  Jeong, Chan Bae (Center for Scientific Instrumentation , Korea Basic Science Institute , Daejeon 34133 , Republic of Korea) ,  Han, Sang Woo (Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea) ,  Park, Inkyu

Abstract AI-Helper 아이콘AI-Helper

Hollow, microrod-like Pt nanostructures are locally synthesized on a small, suspended microheater platform (9 μm × 110 μm) as the catalytic layer of a low-power hydrogen (H2) catalytic combustion sensor. The Pt nanostructures are synthesized via two successive Joule heating-assisted chem...

Keyword

참고문헌 (31)

  1. Cho, Hee-Jin, Chen, Vivian T., Qiao, Shaopeng, Koo, Won-Tae, Penner, Reginald M., Kim, Il-Doo. Pt-Functionalized PdO Nanowires for Room Temperature Hydrogen Gas Sensors. ACS sensors, vol.3, no.10, 2152-2158.

  2. Yun, Jeonghoon, Ahn, Jae-Hyuk, Moon, Dong-Il, Choi, Yang-Kyu, Park, Inkyu. Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection. ACS applied materials & interfaces, vol.11, no.45, 42349-42357.

  3. Lu, C., Chen, Z.. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sensors and actuators. B, Chemical, vol.140, no.1, 109-115.

  4. Zhu, Jianxiong, Cho, Minkyu, Li, Yutao, Cho, Incheol, Suh, Ji-Hoon, Orbe, Dionisio Del, Jeong, Yongrok, Ren, Tian-Ling, Park, Inkyu. Biomimetic Turbinate-like Artificial Nose for Hydrogen Detection Based on 3D Porous Laser-Induced Graphene. ACS applied materials & interfaces, vol.11, no.27, 24386-24394.

  5. Al-Hardan, N.H., Abdullah, M.J., Aziz, A.A.. Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films. International journal of hydrogen energy, vol.35, no.9, 4428-4434.

  6. Cho, Minkyu, Zhu, Jianxiong, Kim, Hyeonggyun, Kang, Kyungnam, Park, Inkyu. Half-Pipe Palladium Nanotube-Based Hydrogen Sensor Using a Suspended Nanofiber Scaffold. ACS applied materials & interfaces, vol.11, no.14, 13343-13349.

  7. Gao, Min, Cho, Minkyu, Han, Hyeuk‐Jin, Jung, Yeon Sik, Park, Inkyu. Palladium‐Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing. Small, vol.14, no.10, 1703691-.

  8. Hubert, T., Boon-Brett, L., Black, G., Banach, U.. Hydrogen sensors - A review. Sensors and actuators. B, Chemical, vol.157, no.2, 329-352.

  9. Bársony, I, Ádám, M, Fürjes, P, Lucklum, R, Hirschfelder, M, Kulinyi, S, Dücső, Cs. Efficient catalytic combustion in integrated micropellistors. Measurement science & technology, vol.20, no.12, 124009-.

  10. Lee, S.M, Dyer, D.C, Gardner, J.W. Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors. Microelectronics journal, vol.34, no.2, 115-126.

  11. Lee, E.B., Hwang, I.S., Cha, J.H., Lee, H.J., Lee, W.B., Pak, J.J., Lee, J.H., Ju, B.K.. Micromachined catalytic combustible hydrogen gas sensor. Sensors and actuators. B, Chemical, vol.153, no.2, 392-397.

  12. Lei Xu, Yuchen Wang, Hong Zhou, Yanxiang Liu, Tie Li, Yuelin Wang. Design, Fabrication, and Characterization of a High-Heating-Efficiency 3-D Microheater for Catalytic Gas Sensors. Journal of microelectromechanical systems : a joint IEEE and ASME publication on microstructures, microactuators, microsensors, and microsystems, vol.21, no.6, 1402-1409.

  13. Harley‐Trochimczyk, Anna, Pham, Thang, Chang, Jiyoung, Chen, Ernest, Worsley, Marcus A., Zettl, Alex, Mickelson, William, Maboudian, Roya. Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Low‐Power Catalytic Gas Sensing. Advanced functional materials, vol.26, no.3, 433-439.

  14. Harley-Trochimczyk, A., Chang, J., Zhou, Q., Dong, J., Pham, T., Worsley, M.A., Maboudian, R., Zettl, A., Mickelson, W.. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel. Sensors and actuators. B, Chemical, vol.206, 399-406.

  15. Yasuda, K.E., Visser, J.H., Bein, T.. Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.119, no.1, 356-359.

  16. Han, C.H., Hong, D.W., Kim, I.J., Gwak, J., Han, S.D., Singh, K.C.. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sensors and actuators. B, Chemical, vol.128, no.1, 320-325.

  17. Cavicchi, R.E., Poirier, G.E., Tea, N.H., Afridi, M., Berning, D., Hefner, A., Suehle, J., Gaitan, M., Semancik, S., Montgomery, C.. Micro-differential scanning calorimeter for combustible gas sensing. Sensors and actuators. B, Chemical, vol.97, no.1, 22-30.

  18. Liu, Xifeng, Dong, Hanpeng, Xia, Shanhong. Micromachined catalytic combustion type gas sensor for hydrogen detection. Micro & nano letters, vol.8, no.10, 668-671.

  19. Yang, Daejong, Fuadi, M. Kasyful, Kang, Kyungnam, Kim, Donghwan, Li, Zhiyong, Park, Inkyu. Multiplexed Gas Sensor Based on Heterogeneous Metal Oxide Nanomaterial Array Enabled by Localized Liquid-Phase Reaction. ACS applied materials & interfaces, vol.7, no.19, 10152-10161.

  20. Kim, D., Yang, D., Kang, K., Lim, M.A., Li, Z., Park, C.O., Park, I.. In-situ integration and surface modification of functional nanomaterials by localized hydrothermal reaction for integrated and high performance chemical sensors. Sensors and actuators. B, Chemical, vol.226, 579-588.

  21. Da Silva, Luís F., Lopes, Osmando F., Catto, Ariadne C., Avansi, Waldir, Bernardi, Maria I. B., Li, Máximo Siu, Ribeiro, Caue, Longo, Elson. Hierarchical growth of ZnO nanorods over SnO2 seed layer: insights into electronic properties from photocatalytic activity. RSC advances, vol.6, no.3, 2112-2118.

  22. Lee, Young Wook, Lim, Mi Ae, Kang, Shin Wook, Park, Inkyu, Han, Sang Woo. Facile synthesis of noble metal nanotubes by using ZnO nanowires as sacrificial scaffolds and their electrocatalytic properties. Chemical communications : Chem comm, vol.47, no.22, 6299-6301.

  23. Abe, Norikazu, Otani, Yohei, Miyake, Masato, Kurita, Masaaki, Takeda, Hiroaki, Okamura, Soichiro, Shiosaki, Tadashi. Influence of a TiO2 Adhesion Layer on the Structure and the Orientation of a Pt Layer in Pt/TiO2/SiO2/Si Structures. Japanese journal of applied physics. Part 1, Regular papers, short notes and review papers, vol.42, no.a5, 2791-2795.

  24. Cho, Incheol, Kang, Kyungnam, Yang, Daejong, Yun, Jeonghoon, Park, Inkyu. Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors. ACS applied materials & interfaces, vol.9, no.32, 27111-27119.

  25. Suh, Ji-Hoon, Cho, Incheol, Kang, Kyungnam, Kweon, Soon-Jae, Lee, Moonjin, Yoo, Hyung-Joun, Park, Inkyu. Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications. Sensors and actuators. B, Chemical, vol.265, 660-667.

  26. Greene, L. E., Yuhas, B. D., Law, M., Zitoun, D., Yang, P.. Solution-Grown Zinc Oxide Nanowires. Inorganic chemistry, vol.45, no.19, 7535-7543.

  27. Yang, Daejong, Kim, Donghwan, Ko, Seung Hwan, Pisano, Albert P., Li, Zhiyong, Park, Inkyu. Focused Energy Field Method for the Localized Synthesis and Direct Integration of 1D Nanomaterials on Microelectronic Devices. Advanced materials, vol.27, no.7, 1207-1215.

  28. Yang, Daejong, Kang, Kyungnam, Kim, Donghwan, Li, Zhiyong, Park, Inkyu. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application. Scientific reports, vol.5, 8149-.

  29. Chang, Ki Soo, Yang, Sun Choel, Kim, Jae-Young, Kook, Myung Ho, Ryu, Seon Young, Choi, Hae Young, Kim, Geon Hee. Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography. Sensors, vol.12, no.4, 4648-4660.

  30. Miller, J.B.. Catalytic sensors for monitoring explosive atmospheres. IEEE sensors journal, vol.1, no.1, 88-93.

  31. Brauns, E., Morsbach, E., Kunz, S., Baumer, M., Lang, W.. A fast and sensitive catalytic gas sensors for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sensors and actuators. B, Chemical, vol.193, 895-903.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로