최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of graph theory, v.96 no.3, 2021년, pp.361 - 378
Kwon, O‐joung (Department of Mathematics, Incheon National University, Incheon, Korea) , Oum, Sang‐il (Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea)
AbstractWe characterize classes of graphs closed under taking vertex‐minors and having no Pn and no disjoint union of n copies of the 1‐subdivision of K1,n for some n. Our characterization is described in terms of a tree of radius 2 whose leaves are labeled by the vertices of a graph G, ...
I. Adler and M. M. Kanté , Linear rank‐width and linear clique‐width of trees , Theoret. Comput. Sci. 589 ( 2015 ), 87 – 98 .
I. Adler , M. M. Kanté , and O. Kwon , Linear rank‐width of distance‐hereditary graphs I. A polynomial‐time algorithm , Algorithmica 78 ( 2017 ), no. 1 , 342 – 377 .
R. Alweiss , S. Lovett, K. Wu, and J. Zhang, Improved bounds for the sunflower lemma , (2019), arXiv:1908.08483.
R. Alweiss , S. Lovett, K. Wu, and J. Zhang, Improved bounds for the sunflower lemma , (K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, eds.), Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC’20, ACM, New York, 2020, pp. 624–630.
H. L. Bodlaender , J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Z. Tuza, Rankings of graphs , SIAM J. Discrete Math. 11 ( 1998 ), no. 1 , 168 – 181 .
B. Courcelle and S. Olariu , Upper bounds to the clique width of graphs , Discrete Appl. Math. 101 ( 2000 ), no. 1‐3 , 77 – 114 .
J. S. Deogun , T. Kloks, D. Kratsch, and H. Müller, On vertex ranking for permutation and other graphs , (E. Patrice, M. Ernst W., and W. Klaus W., eds.), STACS 1994 , Springer , 1994 , pp. 747 – 758 .
M. DeVos , O. Kwon , and S. Oum , Branch‐depth: Generalizing tree‐depth of graph , European J. Combin. 90 ( 2020 ), no. 103186 , 23 .
R. Diestel , Graph theory , Graduate Texts in Mathematics , vol. 173 , 4th ed. , Springer , Heidelberg , 2010 .
G. Ding , B. Oporowski, J. Oxley, and D. Vertigan, Unavoidable minors of large 3‐connected binary matroids , J. Combin. Theory Ser. B 66 ( 1996 ), no. 2 , 334 – 360 .
P. Erdős and R. Rado , Intersection theorems for systems of sets , J. Lond. Math. Soc. 35 ( 1960 ), 85 – 90 .
R. Ganian , Thread graphs, linear rank‐width and their algorithmic applications , Combinatorial Algorithms, Lecture (I. Costas S. and S. William F., eds.), Notes in Comput. Sci. , vol. 6460 , Springer , Heidelberg , 2011 , pp. 38 – 42 .
R. Ganian , P. Hliněný, J. Nešetřil, J. Obdržálek, and P. O. de Mendez, Shrub‐depth: Capturing height of dense graphs , Log. Methods Comput. Sci. 15 ( 2019 ), no. 1 , 7:1 – 7:25 .
R. Ganian , P. Hliněný, J. Nešetřil, J. Obdržálek, and P. O. de Mendez, and R. Ramadurai, When trees grow low: shrubs and fast MSO1 , Mathematical Foundations of Computer Science 2012, Lecture Notes in Comput. Sci. , vol. 7464 , Springer , Heidelberg , 2012 , pp. 419 – 430 .
R. L. Graham , B. L. Rothschild , and J. H. Spencer , Ramsey theory , Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2nd ed. , John Wiley & Sons, Inc. , New York , 1990 .
P. Hliněný , O. Kwon, J. Obdržálek, and S. Ordyniak, Tree‐depth and vertex‐minors , European J. Combin. 56 ( 2016 ), 46 – 56 .
J. Jeong , O. Kwon , and S. Oum , Excluded vertex‐minors for graphs of linear rank‐width at most k , European J. Combin. 41 ( 2014 ), 242 – 257 .
R. Kim , O. Kwon, S. Oum, and V. Sivaraman, Classes of graphs with no long cycle as a vertex‐minor are polynomially χ ‐bounded , J. Combin. Theory Ser. B. 140 ( 2020 ), 372 – 386 .
O. Kwon , R. McCarty, S. Oum, and P. Wollan, Obstructions for bounded shrub‐depth and rank‐depth , (2019), arXiv:1911.00230.
O. Kwon and S. Oum , Unavoidable vertex‐minors in large prime graphs , European J. Combin. 41 ( 2014 ), 100 – 127 .
O. Kwon and S. Oum , Scattered classes of graphs , SIAM J. Discrete Math. 34 ( 2020 ), no. 1 , 972 – 999 .
J. Nešetřil and P. O. de Mendez , Tree‐depth, subgraph coloring and homomorphism bounds , European J. Combin. 27 ( 2006 ), no. 6 , 1022 – 1041 .
J. Nešetřil and P. O. de Mendez , Sparsity, algorithms and combinatorics , vol. 28 , Springer , Heidelberg , 2012 .
T. Novotný , Obstructions for graphs of low rank‐depth, Bachelor's Thesis, Masaryk University, 2016.
S. Oum , Rank‐width and vertex‐minors , J. Combin. Theory Ser. B 95 ( 2005 ), no. 1 , 79 – 100 .
S. Oum , Rank‐width: Algorithmic and structural results , Discrete Appl. Math. 231 ( 2017 ), 15 – 24 .
S. Oum and P. Seymour , Approximating clique‐width and branch‐width , J. Combin. Theory Ser. B 96 ( 2006 ), no. 4 , 514 – 528 .
A. A. Schäffer , Optimal node ranking of trees in linear time , Inform. Process. Lett. 33 ( 1989 ), no. 2 , 91 – 96 .
W. T. Trotter , Combinatorics and partially ordered sets , Johns Hopkins Series in the Mathematical Sciences , Johns Hopkins University Press , Baltimore, MD , 1992 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.