$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Anion exchange and successive ionic layer adsorption and reaction-assisted coating of BiVO4 with Bi2S3 to produce nanostructured photoanode for enhanced photoelectrochemical water splitting

Journal of colloid and interface science, v.585, 2021년, pp.72 - 84  

Majumder, Sutripto (Corresponding authors.) ,  Quang, Nguyen Duc (Corresponding authors.) ,  Kim, Chunjoong (Corresponding authors.) ,  Kim, Dojin

Abstract AI-Helper 아이콘AI-Helper

Abstract Photoelectrochemical water splitting is an environmentally benign way to store solar energy. Properties such as fast charge recombination and poor charge transport rate severely restrict the use of BiVO4 as a photoanode for photoelectrochemical water splitting and many attempts were made t...

Keyword

참고문헌 (59)

  1. ACS Catal. Su 8 3 2253 2018 10.1021/acscatal.7b03437 Role of interfaces in two-dimensional photocatalyst for water splitting 

  2. Energy Environ. Sci. Shen 9 9 2744 2016 10.1039/C6EE01845A Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics 

  3. Dalton Trans. Jiang 47 26 8724 2018 10.1039/C8DT01610K A novel 3D/2D CdIn2S4 nano-octahedron/ZnO nanosheet heterostructure: facile synthesis, synergistic effect and enhanced tetracycline hydrochloride photodegradation mechanism 

  4. Chem. Soc. Rev. Liu 47 16 6410 2018 10.1039/C8CS00396C Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis 

  5. Appl. Catal. B Wei 244 519 2019 10.1016/j.apcatb.2018.11.078 Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light 

  6. Int. J. Hydrogen Energy Hou 44 35 19177 2019 10.1016/j.ijhydene.2018.05.105 ZnO/Cu2O-decorated rGO: heterojunction photoelectrode with improved solar water splitting performance 

  7. Chem. Eng. J. Bai 350 148 2018 10.1016/j.cej.2018.05.109 Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting 

  8. ACS Appl. Mater. Interfaces Kim 10 40 34238 2018 10.1021/acsami.8b11241 Three-dimensional bicontinuous BiVO4 /ZnO photoanodes for high solar water-splitting performance at low bias potential 

  9. J. Mater. Chem. A Tan 5 32 16498 2017 10.1039/C7TA04441K Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review 

  10. Energy Environ. Sci. Han 11 5 1299 2018 10.1039/C8EE00125A Boosting the solar water oxidation performance of a BiVO 4 photoanode by crystallographic orientation control 

  11. J. Phys. Chem. Lett. Abdi 4 16 2752 2013 10.1021/jz4013257 The Origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study 

  12. ACS Catal. Shi 8 4 3331 2018 10.1021/acscatal.7b04277 Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process 

  13. Chem. Mater. Tahir 22 17 5084 2010 10.1021/cm101642b Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films 

  14. J. Mater. Chem. A Bernechea 3 41 20642 2015 10.1039/C5TA04441C Size and bandgap tunability in Bi2S3 colloidal nanocrystals and its effect in solution processed solar cells 

  15. J. Mater. Chem. Riley 14 4 704 2004 10.1039/b311517h Colloidal bismuth sulfide nanoparticles: a photoelectrochemical study of the relationship between bandgap and particle size 

  16. ACS Appl. Energy Mater. Chen 1 11 6089 2018 10.1021/acsaem.8b01146 Direct growth of BiVO4/Bi2S3 nanorod array on conductive glass as photocatalyst for enhancing the photoelectrochemical performance 

  17. ACS Sustainable Chem. Eng. Mahadik 6 9 12489 2018 10.1021/acssuschemeng.8b03140 In-Situ Noble fabrication of Bi2S3/BiVO4 hybrid nanostructure through a photoelectrochemical transformation process for solar hydrogen production 

  18. Chem. Commun. Cheng 48 78 9729 2012 10.1039/c2cc35289c An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol 

  19. Adv. Funct. Mater. Kuo 21 4 792 2011 10.1002/adfm.201002108 Cu2O Nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission x-ray microscopy study 

  20. Science Yin 304 5671 711 2004 10.1126/science.1096566 Formation of hollow nanocrystals through the nanoscale Kirkendall effect 

  21. Chem. Rev. De Trizio 116 18 10852 2016 10.1021/acs.chemrev.5b00739 Forging colloidal nanostructures via cation exchange reactions 

  22. Nano Convergence Cho 6 1 17 2019 10.1186/s40580-019-0187-0 Ion exchange: an advanced synthetic method for complex nanoparticles 

  23. J. Am. Chem. Soc. Muthuswamy 132 45 15849 2010 10.1021/ja106397b Oxidation does not (always) kill reactivity of transition metals: Solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides 

  24. Angew. Chem. Int. Ed. Xiong 51 4 949 2012 10.1002/anie.201106826 Serial ionic exchange for the synthesis of multishelled copper sulfide hollow spheres 

  25. J. Am. Chem. Soc. Feldman 118 23 5362 1996 10.1021/ja9602408 Bulk Synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism 

  26. Science Son 306 5698 1009 2004 10.1126/science.1103755 Cation Exchange reactions in ionic nanocrystals 

  27. Science Feldman 267 5195 222 1995 10.1126/science.267.5195.222 High-rate, gas-phase growth of MoS 2 nested inorganic fullerenes and nanotubes 

  28. Nanoscale Anderson 6 21 12195 2014 10.1039/C4NR02025A Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange 

  29. Int. J. Hydrogen Energy Majumder 44 14 7095 2019 10.1016/j.ijhydene.2019.01.277 Nanoheterojunction through PbS nanoparticles anchored CdS nanowires towards solar cell application 

  30. PCCP Hodes 9 18 2181 2007 10.1039/b616684a Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition 

  31. Bull. Mater. Sci. Pathan 27 2 85 2004 10.1007/BF02708491 Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method 

  32. Science Kim 343 6174 990 2014 10.1126/science.1246913 Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting 

  33. Ceramics International Nikam 41 9, Part A 10394 2015 10.1016/j.ceramint.2015.03.239 SILAR coated Bi2S3 nanoparticles on vertically aligned ZnO nanorods: synthesis and characterizations 

  34. CrystEngComm Chen 17 45 8720 2015 10.1039/C5CE01747E One-step synthesis of a hierarchical Bi2S3 nanoflower\In2S3 nanosheet composite with efficient visible-light photocatalytic activity 

  35. Energy Environ. Sci. Han 12 8 2443 2019 10.1039/C9EE00950G Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation 

  36. Catal. Sci. Technol. Hu 10 12 3843 2020 10.1039/D0CY00006J In situ preparation of Bi2S3 nanoribbon-anchored BiVO4 nanoscroll heterostructures for the catalysis of Cr(vi) photoreduction 

  37. J. Mater. Sci. Miniach 53 24 16511 2018 10.1007/s10853-018-2785-3 Solvent-controlled morphology of bismuth sulfide for supercapacitor applications 

  38. J. Nanoparticles Panigrahi 2013 367812 2013 10.1155/2013/367812 The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition 

  39. J. Nanoparticles Panigrahi 2013 2013 10.1155/2013/367812 The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition 

  40. Mater. Des. Helal 102 2016 10.1016/j.matdes.2016.04.043 Controlled synthesis of bismuth sulfide nanorods by hydrothermal method and their photocatalytic activity 

  41. Anal. Methods Xi 11 19 2605 2019 10.1039/C9AY00591A A type I Bi2S3@ZnS core-shell structured photocatalyst for the selective photoelectrochemical sensing of Cu2+ 

  42. Inorg. Chem. Reddy 52 11 6390 2013 10.1021/ic400159m Fabrication of Novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation 

  43. J. Phys. Chem. C Jiang 120 4 2058 2016 10.1021/acs.jpcc.5b10856 Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps 

  44. J. Colloid Interface Sci. Baral 554 278 2019 10.1016/j.jcis.2019.07.007 Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of norfloxacine and oxygen evolution reaction 

  45. Angew. Chem. Int. Ed. Qiu 58 52 19087 2019 10.1002/anie.201912475 Freeing the polarons to facilitate charge transport in BiVO4 from oxygen vacancies with an oxidative 2D precursor 

  46. RSC Adv. Dong 5 19 14610 2015 10.1039/C4RA13734E Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review 

  47. Nano Res. Cheng 11 2 855 2018 10.1007/s12274-017-1696-y Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure 

  48. J. Mater. Chem. C Gupta 4 22 4988 2016 10.1039/C6TC01032F Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations 

  49. J. Phys. Chem. Lett. Danilovic 5 14 2474 2014 10.1021/jz501061n Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments 

  50. J. Mater. Sci. Liu 54 15 10670 2019 10.1007/s10853-019-03658-7 Cobalt-phosphate-modified Mo:BiVO4 mesoporous photoelectrodes for enhanced photoelectrochemical water splitting 

  51. Appl. Phys. Lett. Berr 100 22 223903 2012 10.1063/1.4723575 Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation 

  52. Chem. Mater. Tachibana 14 6 2527 2002 10.1021/cm011563s Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells 

  53. Nano Energy Ye 18 222 2015 10.1016/j.nanoen.2015.10.018 BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability: p-n junction to expand solar adsorption range and facilitate charge carrier dynamics 

  54. Int. J. Hydrogen Energy Subramanyam 2019 Plasmonic Bi nanoparticle decorated BiVO4/rGO as an efficient photoanode for photoelectrochemical water splitting 

  55. J. Colloid Interface Sci. Wang 534 338 2019 10.1016/j.jcis.2018.09.056 In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting 

  56. New J. Chem. Wei 42 24 19415 2018 10.1039/C8NJ04846K Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances 

  57. Nano-Micro Lett. Li 10 3 45 2018 10.1007/s40820-018-0199-z Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition 

  58. Sens. Actuators, B Kim 267 597 2018 10.1016/j.snb.2018.04.079 Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core-shell nanowires 

  59. Int. J. Electrochem. Sci. Mane 2 2007 10.1016/S1452-3981(23)17060-X Surface morphology and optical studies of non-aqueous Bi2S3 thin films 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로