$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Projection of Orthogonal Tiling from the Retina to the Visual Cortex 원문보기

Cell reports, v.34 no.1, 2021년, pp.108581 -   

Song, Min (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ,  Jang, Jaeson (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology) ,  Kim, Gwangsu (Department of Physics, Korea Advanced Institute of Science and Technology) ,  Paik, Se-Bum (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Summary In higher mammals, the primary visual cortex (V1) is organized into diverse tuning maps of visual features. The topography of these maps intersects orthogonally, but it remains unclear how such a systematic relationship can develop. Here, we show that the orthogonal organization already exi...

Keyword

참고문헌 (69)

  1. J. Physiol. Albus 348 153 1984 10.1113/jphysiol.1984.sp015104 Early post-natal development of neuronal function in the kitten’s visual cortex: a laminar analysis 

  2. Prog. Brain Res. Alonso 154 3 2006 10.1016/S0079-6123(06)54001-4 Retinogeniculate connections: a balancing act between connection specificity and receptive field diversity 

  3. J. Physiol. Balasubramanian 587 2753 2009 10.1113/jphysiol.2009.170704 Receptive fields and functional architecture in the retina 

  4. Nature Basole 423 986 2003 10.1038/nature01721 Mapping multiple features in the population response of visual cortex 

  5. Nature Blasdel 321 579 1986 10.1038/321579a0 Voltage-sensitive dyes reveal a modular organization in monkey striate cortex 

  6. J. Physiol. Bloomfield 383 653 1987 10.1113/jphysiol.1987.sp016435 Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat 

  7. Neuron Brown 27 371 2000 10.1016/S0896-6273(00)00044-1 Receptive field microstructure and dendritic geometry of retinal ganglion cells 

  8. J. Neurosci. Chapman 20 1922 2000 10.1523/JNEUROSCI.20-05-01922.2000 Cortical cell orientation selectivity fails to develop in the absence of ON-center retinal ganglion cell activity 

  9. J. Neurosci. Chichilnisky 22 2737 2002 10.1523/JNEUROSCI.22-07-02737.2002 Functional asymmetries in ON and OFF ganglion cells of primate retina 

  10. Neuron Chung 20 1177 1998 10.1016/S0896-6273(00)80498-5 Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression 

  11. Nat. New Biol. Cleland 231 191 1971 10.1038/newbio231191a0 Simultaneous recording of input and output of lateral geniculate neurones 

  12. J. Physiol. Cleland 217 473 1971 10.1113/jphysiol.1971.sp009581 Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus 

  13. J. Neurophysiol. Crair 77 3381 1997 10.1152/jn.1997.77.6.3381 Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex 

  14. Neuron Crair 19 307 1997 10.1016/S0896-6273(00)80941-1 Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats 

  15. Science Crair 279 566 1998 10.1126/science.279.5350.566 The role of visual experience in the development of columns in cat visual cortex 

  16. Vision Res. Croner 35 7 1995 10.1016/0042-6989(94)E0066-T Receptive fields of P and M ganglion cells across the primate retina 

  17. Exp. Brain Res. Derrington 55 431 1984 10.1007/BF00235273 Development of spatial frequency selectivity in striate cortex of vision-deprived cats 

  18. Science Douglas 269 981 1995 10.1126/science.7638624 Recurrent excitation in neocortical circuits 

  19. Nature Ferster 380 249 1996 10.1038/380249a0 Orientation selectivity of thalamic input to simple cells of cat visual cortex 

  20. PLOS Biol. Gauthier 7 e1000063 2009 10.1371/journal.pbio.1000063 Receptive fields in primate retina are coordinated to sample visual space more uniformly 

  21. J. Neurosci. Gauthier 29 4675 2009 10.1523/JNEUROSCI.5294-08.2009 Uniform signal redundancy of parasol and midget ganglion cells in primate retina 

  22. J. Neurosci. Ghosh 12 39 1992 10.1523/JNEUROSCI.12-01-00039.1992 Pathfinding and target selection by developing geniculocortical axons 

  23. J. Comp. Neurol. Hamos 259 165 1987 10.1002/cne.902590202 Synaptic circuits involving an individual retinogeniculate axon in the cat 

  24. J. Comp. Neurol. Hickey 183 221 1979 10.1002/cne.901830202 Variability of laminar patterns in the human lateral geniculate nucleus 

  25. Philos. Trans. R. Soc. Lond. B Biol. Sci. Horton 360 837 2005 10.1098/rstb.2005.1623 The cortical column: a structure without a function 

  26. J. Neurosci. Hubener 17 9270 1997 10.1523/JNEUROSCI.17-23-09270.1997 Spatial relationships among three columnar systems in cat area 17 

  27. J. Neurosci. Issa 20 8504 2000 10.1523/JNEUROSCI.20-22-08504.2000 Spatial frequency maps in cat visual cortex 

  28. J. Neurosci. Jang 37 12141 2017 10.1523/JNEUROSCI.1873-17.2017 Interlayer repulsion of retinal ganglion cell mosaics regulates spatial organization of functional maps in the visual cortex 

  29. Cell Rep. Jang 30 3270 2020 10.1016/j.celrep.2020.02.038 Retino-cortical mapping ratio predicts columnar and salt-and-pepper organization in mammalian visual cortex 

  30. Nat. Neurosci. Jin 14 232 2011 10.1038/nn.2729 Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex 

  31. J. Neurosci. Kim 40 6584 2020 10.1523/JNEUROSCI.0649-20.2020 Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex 

  32. Nat. Commun. Koch 7 13529 2016 10.1038/ncomms13529 Functional implications of orientation maps in primary visual cortex 

  33. Nature Kremkow 533 52 2016 10.1038/nature17936 Principles underlying sensory map topography in primary visual cortex 

  34. J. Neurophysiol. Landisman 87 3126 2002 10.1152/jn.2002.87.6.3126 Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation 

  35. Nature Lee 533 90 2016 10.1038/nature17941 Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture 

  36. J. Comp. Neurol. LeVay 179 223 1978 10.1002/cne.901790113 Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study 

  37. J. Neurosci. LeVay 5 486 1985 10.1523/JNEUROSCI.05-02-00486.1985 The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey 

  38. Neuron Martinez 81 943 2014 10.1016/j.neuron.2013.12.014 Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image 

  39. Vis. Neurosci. Mastronarde 8 407 1992 10.1017/S0952523800004934 Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: receptive-field properties and retinal inputs 

  40. Nat. Neurosci. Mooser 7 872 2004 10.1038/nn1287 A morphological basis for orientation tuning in primary visual cortex 

  41. J. Physiol. Movshon 283 79 1978 10.1113/jphysiol.1978.sp012489 Receptive field organization of complex cells in the cat’s striate cortex 

  42. Curr. Opin. Neurobiol. Nauhaus 24 1 2014 10.1016/j.conb.2013.08.007 Building maps from maps in primary visual cortex 

  43. Nat. Neurosci. Nauhaus 15 1683 2012 10.1038/nn.3255 Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex 

  44. Neuron Nauhaus 91 893 2016 10.1016/j.neuron.2016.07.015 Efficient receptive field tiling in primate V1 

  45. J. Neurophysiol. Ohzawa 75 1779 1996 10.1152/jn.1996.75.5.1779 Encoding of binocular disparity by simple cells in the cat’s visual cortex 

  46. Nat. Neurosci. Paik 14 919 2011 10.1038/nn.2824 Retinal origin of orientation maps in visual cortex 

  47. Proc. Natl. Acad. Sci. USA Paik 109 7091 2012 10.1073/pnas.1118926109 Link between orientation and retinotopic maps in primary visual cortex 

  48. Math. Sci. Hum. Petitot 145 5 1999 Vers une neurogeometrie. Fibrations corticales, structures de contact et contours subjectifs modaux 

  49. Neuron Rhoades 103 658 2019 10.1016/j.neuron.2019.05.036 Unusual physiological properties of smooth monostratified ganglion cell types in primate retina 

  50. J. Neurophysiol. Ringach 92 468 2004 10.1152/jn.01202.2003 Haphazard wiring of simple receptive fields and orientation columns in visual cortex 

  51. PLOS ONE Ringach 2 e251 2007 10.1371/journal.pone.0000251 On the origin of the functional architecture of the cortex 

  52. Phys. Rev. Lett. Ruderman 73 814 1994 10.1103/PhysRevLett.73.814 Statistics of natural images: scaling in the woods 

  53. J. Comput. Neurosci. Sailamul 43 189 2017 10.1007/s10827-017-0657-5 Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks 

  54. Biol. Cybern. Sarti 98 33 2008 10.1007/s00422-007-0194-9 The symplectic structure of the primary visual cortex 

  55. J. Neurosci. Schein 7 996 1987 10.1523/JNEUROSCI.07-04-00996.1987 Mapping of retinal and geniculate neurons onto striate cortex of macaque 

  56. J. Math. Biol. Sejnowski 4 303 1977 10.1007/BF00275079 Storing covariance with nonlinearly interacting neurons 

  57. J. Neurosci. Shatz 3 482 1983 10.1523/JNEUROSCI.03-03-00482.1983 The prenatal development of the cat’s retinogeniculate pathway 

  58. J. Neurosci. Shatz 6 3655 1986 10.1523/JNEUROSCI.06-12-03655.1986 The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex 

  59. Proc. Natl. Acad. Sci. USA Soodak 84 3936 1987 10.1073/pnas.84.11.3936 The retinal ganglion cell mosaic defines orientation columns in striate cortex 

  60. Front. Syst. Neurosci. Suematsu 7 103 2013 10.3389/fnsys.2013.00103 Spatiotemporal receptive field structures in retinogeniculate connections of cat 

  61. Nat. Neurosci. Swindale 3 822 2000 10.1038/77731 Visual cortex maps are optimized for uniform coverage 

  62. Nat. Neurosci. Tavazoie 3 608 2000 10.1038/75786 Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development 

  63. Neuron Thompson 91 1021 2016 10.1016/j.neuron.2016.07.040 Cortical feedback regulates feedforward retinogeniculate refinement 

  64. Neuroscientist Van Hooser 13 639 2007 10.1177/1073858407306597 Similarity and diversity in visual cortex: is there a unifying theory of cortical computation? 

  65. J. Comput. Neurosci. Vidne 33 97 2012 10.1007/s10827-011-0376-2 Modeling the impact of common noise inputs on the network activity of retinal ganglion cells 

  66. Proc. R. Soc. Lond. B Biol. Sci. Wassle 212 177 1981 10.1098/rspb.1981.0033 Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations 

  67. Nature Weliky 379 725 1996 10.1038/379725a0 A systematic map of direction preference in primary visual cortex 

  68. J. Neurophysiol. Xu 94 2748 2005 10.1152/jn.00354.2005 Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals 

  69. Vis. Neurosci. Zhan 17 23 2000 10.1017/S0952523800171032 Modeling cat retinal beta-cell arrays 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로