$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical simulation of bread baking in a convection oven

Applied thermal engineering, v.184, 2021년, pp.116252 -   

Al-Nasser, M. (Mechanical Engineering Department, American University of Beirut) ,  Fayssal, I. (Mechanical and Mechatronics Engineering Department, Rafik Hariri University) ,  Moukalled, F. (Mechanical Engineering Department, American University of Beirut)

Abstract AI-Helper 아이콘AI-Helper

Abstract The paper reports on a numerical study conducted to simulate the bread baking process in an industrial convection oven. This involves predicting the unsteady multiphase flow and heat and mass transfer fields within the oven while accounting for changes in bread properties and volume. The c...

주제어

참고문헌 (50)

  1. E. Goldschein, The 10 most important crops in the world. Business Insider, September 20, 2011, <https://www.businessinsider.com/10-crops-that-feed-the-world-2011-9>. 

  2. J. Food Eng. Therdthai 55 1 41 2002 10.1016/S0260-8774(01)00240-0 Optimisation of the temperature profile in bread baking 

  3. Food Bioprocess Technol. Chhanwal 5 4 1157 2012 10.1007/s11947-012-0804-y Computational fluid dynamics (CFD) modeling for bread baking process-a review 

  4. Numerical Heat Transfer Papanicolaou 18 4 427 1991 10.1080/10407789008944802 Mixed convection from an isolated heat source in a rectangular enclosure 

  5. Numerical Heat Transfer: Part A: Appl. Asbik 41 4 403 2002 10.1080/104077802317261245 Numerical study of laminar mixed convection in a vertical saturated porous enclosure: the combined effect of double diffusion and evaporation 

  6. Numerical Heat Transfer: Part A: Appl. Abraham 44 2 105 2003 10.1080/713838194 Three-dimensional laminar and turbulent natural convection in a continuously/discretely wall-heated enclosure containing a thermal load 

  7. Numerical Heat Transfer: Part A: Appl. Li 43 5 501 2003 10.1080/10407780307318 A model of coupled liquid moisture and heat transfer in porous textiles with consideration of gravity 

  8. Numerical Heat Transfer: Part A: Appl. Zhang 52 12 1081 2007 10.1080/10407780701453800 Heat and mass transfer with condensation in non-saturated porous media 

  9. J. Food Eng. Purlis 137 39 2014 10.1016/j.jfoodeng.2014.03.033 Optimal design of bread baking: numerical investigation on combined convective and infrared heating 

  10. Food Res. Int. Chhanwal 44 4 978 2011 10.1016/j.foodres.2011.02.037 Computational fluid dynamics modeling of bread baking process 

  11. J. Food Eng. Abraham 62 4 409 2004 10.1016/S0260-8774(03)00265-6 A simple model and validating experiments for predicting the heat transfer to a load situated in an electrically heated oven 

  12. J. Texture Stud. Chhanwal 45 6 462 2014 10.1111/jtxs.12097 Temperature-and moisture-based modeling for prediction of starch gelatinization and crumb softness during bread-baking process 

  13. Appl. Therm. Eng. Pinelli 117 330 2017 10.1016/j.applthermaleng.2017.02.037 Thermal and fluid dynamic analysis of an air-forced convection rotary bread-baking oven by means of an experimental and numerical approach 

  14. J. Food Eng. Therdthai 60 2 211 2003 10.1016/S0260-8774(03)00043-8 Two-dimensional CFD modelling and simulation of an industrial continuous bread baking oven 

  15. Eliasson 1993 Cereals in Breadmaking: A Molecular Colloidal Approach 

  16. J. Food Eng. Wong 77 4 784 2006 10.1016/j.jfoodeng.2005.08.019 Robustness analysis of a CFD model to the uncertainties in its physical properties for a bread baking process 

  17. Zhou 287 2007 Three-dimensional modeling of a continuous industrial baking process. Computational fluid dynamics in food processing 

  18. J. Food Eng. Zanoni 23 3 321 1994 10.1016/0260-8774(94)90057-4 Study of the bread baking process-II. Mathematical modelling 

  19. J. Food Eng. Zhang 75 1 78 2006 10.1016/j.jfoodeng.2005.03.058 Mathematical modeling of bread baking process 

  20. J. Food Eng. Purlis 91 3 428 2009 10.1016/j.jfoodeng.2008.09.037 Bread baking as a moving boundary problem. Part 1: mathematical modelling 

  21. J. Food Eng. Purlis 91 3 434 2009 10.1016/j.jfoodeng.2008.09.038 Bread baking as a moving boundary problem. Part 2: model validation and numerical simulation 

  22. Comput. Fluids Shih 24 3 227 1995 10.1016/0045-7930(94)00032-T A new k-∊ eddy viscosity model for high Reynolds number turbulent flows 

  23. Int. J. Heat Mass Transf. Moukalled 54 1-3 549 2011 10.1016/j.ijheatmasstransfer.2010.09.015 The use of CFD for predicting and optimizing the performance of air conditioning equipment 

  24. https://www.ansys.com/. 

  25. AIChE J. Zhang 51 9 2569 2005 10.1002/aic.10518 Transport processes and large deformation during baking of bread 

  26. Nicolas 2012 Journal of Physics: Conference Series Modelling heat and mass transfer in bread baking with mechanical deformation 

  27. J. Food Eng. Nicolas 130 23 2014 10.1016/j.jfoodeng.2014.01.014 Modelling heat and mass transfer in deformable porous media: application to bread baking 

  28. Appl. Therm. Eng. Ploteau 48 289 2012 10.1016/j.applthermaleng.2012.04.060 Numerical and experimental characterization of a batch bread baking oven 

  29. J. Food Eng. Therdthai 65 4 543 2004 10.1016/j.jfoodeng.2004.02.018 Simulation of starch gelatinisation during baking in a travelling-tray oven by integrating a three-dimensional CFD model with a kinetic model 

  30. LWT-Food Sci. Technol. Zanoni 28 3 314 1995 10.1016/S0023-6438(95)94458-3 Modelling of starch gelatinization kinetics of bread crumb during baking 

  31. W.-H. Lee, A pressure iteration scheme for two-phase modelling, Los Alamos Scientific Laboratory, Los Alamos, NM, Report No. LA-UR(1979): p. 79-975. 

  32. Ann. Phys. Hertz 17 177 1882 10.1002/andp.18822531002 About the evaporation of liquids, especially mercury, in a vacuo 

  33. Int. J. Heat Mass Transfer Wu 50 1186 2007 10.1016/j.ijheatmasstransfer.2006.10.013 Simulation of refrigerant flow boiling in serpentine tubes 

  34. Comput. Chem. Eng. De Schepper 33 1 122 2009 10.1016/j.compchemeng.2008.07.013 Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker 

  35. Int. Commun. Heat Mass Transfer Alizadehdakhel 37 3 312 2010 10.1016/j.icheatmasstransfer.2009.09.002 CFD modeling of flow and heat transfer in a thermosyphon 

  36. J. Food Eng. Zanoni 26 4 497 1995 10.1016/0260-8774(94)00073-I Determination of the thermal diffusivity of bread as a function of porosity 

  37. V. Nicolas, S. Patrick, P. Glouannec, V. Jury, L. Boillereaux, J.-P. Ploteau, Modeling heat and mass transfer in bread during baking, in: Comsol Conference. 2010, Paris. 

  38. Numerical Heat Transfer, Part B: Fundam. Moukalled 61 3 171 2012 10.1080/10407790.2012.666145 Transient schemes for capturing interfaces of free-surface flows 

  39. J. Comput. Phys. Rubin 27 153 1982 Polynomial interpolation method for viscous flow calculations 

  40. J. Comput. Phys. Harten 49 3 357 1983 10.1016/0021-9991(83)90136-5 High resolution schemes for hyperbolic conservation laws 

  41. Numerical Heat Transfer, Part B: Fundam. Darwish 26 1 79 1994 10.1080/10407799408914918 Normalized variable and space formulation methodology for high-resolution schemes 

  42. Numerical Heat Transfer, Part B: Fundam. Mathur 31 195 1997 10.1080/10407799708915105 A pressure-based method for unstructured meshes 

  43. Numerical Heat Transfer, Part B: Fundam. Demirdzic 68 1 1 2015 10.1080/10407790.2014.985992 On the discretization of the diffusion term in finite-volume continuum mechanics 

  44. Numerical Heat Transfer, Part B: Fundam. Darwish 71 6 506 2017 10.1080/10407790.2017.1330060 General fully implicit discretization of the diffusion term for the finite volume method 

  45. Int. J. Heat Mass Transf. Patankar 15 1787 1972 10.1016/0017-9310(72)90054-3 A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows 

  46. Numerical Heat Transfer Van Doormaal 7 147 1984 10.1080/01495728408961817 Enhancement of the SIMPLE method for predicting incompressible fluid flows 

  47. Numerical Heat Transfer, Part B: Fundam. Acharya 15 131 1989 10.1080/10407798908944897 Improvements to incompressible flow calculation on a non- staggered curvilinear grid 

  48. Numerical Heat Transfer, Part B: Fundam. Moukalled 37 1 103 2000 10.1080/104077900275576 A unified formulation of the segregated class of algorithms for fluid flow at all speeds 

  49. Patankar 1980 Numerical Heat Transfer and Fluid Flow 

  50. 10.1007/978-3-319-16874-6 F. Moukalled, L. Mangani, M. Darwish, The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM® and Matlab®, Springer International Publishing, Switzerland, 2015. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로