$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A hybrid direct-absorption parabolic-trough solar collector combining both volumetric and surface absorption

Applied thermal engineering, v.185, 2021년, pp.116333 -   

Qin, Caiyan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Lee, Jungchul ,  Lee, Bong Jae

Abstract AI-Helper 아이콘AI-Helper

Abstract By making the nanofluids separately flowing into two concentric segmentations in a direct-absorption parabolic-trough solar collector (DAPTSC), we recently showed that the dual-nanofluid DAPTSC with a semi-cylindrical reflective coating could reduce the heat loss to the environment by empl...

Keyword

참고문헌 (52)

  1. Sol. Energy Shah 183 173 2019 10.1016/j.solener.2019.03.012 Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review 

  2. Phys. Rep. Qiu 843 1 2020 10.1016/j.physrep.2019.12.001 A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids 

  3. J. Sol. Energ. Eng. Tyagi 131 2009 10.1115/1.3197562 Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector 

  4. Hunt 1978 Small Particle Heat Exchangers 

  5. J. Renew. Sustain. Energy Otanicar 2 2010 10.1063/1.3429737 Nanofluid-based direct absorption solar collector 

  6. Sol. Energy Du 137 393 2016 10.1016/j.solener.2016.08.029 Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting 

  7. Sol. Energy Mater. Sol. Cells Mallah 201 2019 10.1016/j.solmat.2019.110084 Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications 

  8. Appl. Therm. Eng. He 88 165 2015 10.1016/j.applthermaleng.2014.09.053 Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids 

  9. Appl. Therm. Eng. Fu 114 961 2017 10.1016/j.applthermaleng.2016.12.054 Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids 

  10. Phys. Rep. Sharaf 1 2020 10.1016/j.physrep.2020.04.005 On the colloidal and chemical stability of solar nanofluids: From nanoscale interactions to recent advances 

  11. Sol. Energy Mater. Sol. Cells Sani 95 2994 2011 10.1016/j.solmat.2011.06.011 Potential of carbon nanohorn-based suspensions for solar thermal collectors 

  12. Energy Convers. Manage. Wang 130 176 2016 10.1016/j.enconman.2016.10.049 Direct vapor generation through localized solar heating via carbon-nanotube nanofluid 

  13. Opt. Express Jeon 22 A1101 2014 10.1364/OE.22.0A1101 Optical property of blended plasmonic nanofluid based on gold nanorods 

  14. Energy Convers. Manage. Chen 112 21 2016 10.1016/j.enconman.2016.01.009 Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes 

  15. Sol. Energy Rativa 118 419 2015 10.1016/j.solener.2015.05.048 Solar radiation absorption of nanofluids containing metallic nanoellipsoids 

  16. J. Sol. Energ. Eng. Lee 134 2012 10.1115/1.4005756 Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption 

  17. Sol. Energy Mater. Sol. Cells Lee 209 2020 10.1016/j.solmat.2020.110442 Synthesis of therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients 

  18. Nanoscale Liu 9 14854 2017 10.1039/C7NR03912C Full-spectrum volumetric solar thermal conversion via photonic nanofluids 

  19. Int. J. Heat Mass Transf. Wang 116 825 2018 10.1016/j.ijheatmasstransfer.2017.09.014 A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies 

  20. Renew. Energy Qin 145 21 2020 10.1016/j.renene.2019.05.133 Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector 

  21. J. Quant. Spectrosc. Ra Chen 2020 10.1016/j.jqsrt.2020.107029 Coupled plasmon resonances of au thorn nanoparticles to enhance solar absorption performance 

  22. Opt. Express Qin 28 15731 2020 10.1364/OE.393351 Absorption characteristics of a metal-insulator-metal nanodisk for solar thermal applications 

  23. Sol. Energy Jeon 132 247 2016 10.1016/j.solener.2016.03.022 Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluids 

  24. Energy Convers. Manage. He 73 150 2013 10.1016/j.enconman.2013.04.019 Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems 

  25. Sol. Energy Jin 139 278 2016 10.1016/j.solener.2016.09.021 Photothermal conversion efficiency of nanofluids: An experimental and numerical study 

  26. Int. J. Heat Mass Transf. Chen 108 1894 2017 10.1016/j.ijheatmasstransfer.2017.01.005 Investigation into Au nanofluids for solar photothermal conversion 

  27. Renew. Energ Bhalla 123 616 2018 10.1016/j.renene.2018.01.042 Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector 

  28. Sol. Energy Wang 184 240 2019 10.1016/j.solener.2019.04.013 Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion 

  29. Appl. Therm. Eng. Guo 2020 10.1016/j.applthermaleng.2020.115207 Introducing optical fiber as internal light source into direct absorption solar collector for enhancing photo-thermal conversion performance of MWCNT-H2O nanofluids 

  30. Sol. Energy Qin 169 231 2018 10.1016/j.solener.2018.04.056 Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector 

  31. Sci. Rep. Seo 10 1 2020 10.1038/s41598-020-65811-6 Tailoring the spectral sbsorption coefficient of a blended plasmonic nanofluid using a customized genetic algorithm 

  32. Sol. Energy Qin 150 512 2017 10.1016/j.solener.2017.05.007 Optimization of a direct absorption solar collector with blended plasmonic nanofluids 

  33. Renew. Energy Gorji 106 274 2017 10.1016/j.renene.2017.01.031 Thermal and exergy optimization of a nanofluid-based direct absorption solar collector 

  34. Int. J. Energy Res. Chen 39 1843 2015 10.1002/er.3338 Numerical simulation on the optical and thermal performance of a modified integrated compound parabolic solar concentrator 

  35. Renew. Sustain. Energy Rev. Kumaresan 77 1363 2017 10.1016/j.rser.2017.01.171 Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors 

  36. Appl. Energy Yılmaz 225 135 2018 10.1016/j.apenergy.2018.05.014 Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review 

  37. J. Nanotechnol. Eng. Med. Khullar 3 2012 10.1115/1.4007387 Solar energy harvesting using nanofluids-based concentrating solar collector 

  38. Nanomaterials Xu 5 2131 2015 10.3390/nano5042131 Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator 

  39. Appl. Therm. Eng. Menbari 104 176 2016 10.1016/j.applthermaleng.2016.05.064 Heat transfer analysis and the effect of CuO/water nanofluid on direct absorption concentrating solar collector 

  40. Renew. Energy Dugaria 128 495 2018 10.1016/j.renene.2017.06.029 Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation 

  41. Sol. Energy O’Keeffe 159 44 2018 10.1016/j.solener.2017.10.066 Modelling the efficiency of a nanofluid-based direct absorption parabolic trough solar collector 

  42. Renew. Energy de los Rios 122 665 2018 10.1016/j.renene.2018.01.094 Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids 

  43. Energy Convers. Manage. Bortolato 150 693 2017 10.1016/j.enconman.2017.08.044 Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector 

  44. Renew. Energy Qin 143 24 2019 10.1016/j.renene.2019.04.146 Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids 

  45. Int. J. Energy Res. Qin 4015 2020 10.1002/er.5165 Comparative analysis of direct-absorption parabolic-trough solar collectors considering concentric nanofluid segmentation 

  46. Bohren 1983 Absorption and Scattering of Light by Small Particles 

  47. Appl. Energy Cheng 115 559 2014 10.1016/j.apenergy.2013.11.001 Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model 

  48. Energy Fan 142 920 2018 10.1016/j.energy.2017.10.076 Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector 

  49. Modest 2013 Radiative Heat Transfer 

  50. Int. J. Renew. Energy Res. Kasaeian 6 15 2016 Optical and thermal investigation of selective coatings for solar absorber tube 

  51. Incropera 2013 Principles of Heat and Mass Transfer 

  52. Solutia 2013 Therminol VP-1 vapor phase liquid phase heat transfer fluid 12∘C to 400∘C 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로