최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Applied thermal engineering, v.185, 2021년, pp.116333 -
Qin, Caiyan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) , Lee, Jungchul , Lee, Bong Jae
Abstract By making the nanofluids separately flowing into two concentric segmentations in a direct-absorption parabolic-trough solar collector (DAPTSC), we recently showed that the dual-nanofluid DAPTSC with a semi-cylindrical reflective coating could reduce the heat loss to the environment by empl...
Sol. Energy Shah 183 173 2019 10.1016/j.solener.2019.03.012 Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review
Phys. Rep. Qiu 843 1 2020 10.1016/j.physrep.2019.12.001 A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids
J. Sol. Energ. Eng. Tyagi 131 2009 10.1115/1.3197562 Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector
Hunt 1978 Small Particle Heat Exchangers
J. Renew. Sustain. Energy Otanicar 2 2010 10.1063/1.3429737 Nanofluid-based direct absorption solar collector
Sol. Energy Du 137 393 2016 10.1016/j.solener.2016.08.029 Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting
Sol. Energy Mater. Sol. Cells Mallah 201 2019 10.1016/j.solmat.2019.110084 Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications
Appl. Therm. Eng. He 88 165 2015 10.1016/j.applthermaleng.2014.09.053 Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids
Appl. Therm. Eng. Fu 114 961 2017 10.1016/j.applthermaleng.2016.12.054 Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids
Phys. Rep. Sharaf 1 2020 10.1016/j.physrep.2020.04.005 On the colloidal and chemical stability of solar nanofluids: From nanoscale interactions to recent advances
Sol. Energy Mater. Sol. Cells Sani 95 2994 2011 10.1016/j.solmat.2011.06.011 Potential of carbon nanohorn-based suspensions for solar thermal collectors
Energy Convers. Manage. Wang 130 176 2016 10.1016/j.enconman.2016.10.049 Direct vapor generation through localized solar heating via carbon-nanotube nanofluid
Opt. Express Jeon 22 A1101 2014 10.1364/OE.22.0A1101 Optical property of blended plasmonic nanofluid based on gold nanorods
Energy Convers. Manage. Chen 112 21 2016 10.1016/j.enconman.2016.01.009 Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes
Sol. Energy Rativa 118 419 2015 10.1016/j.solener.2015.05.048 Solar radiation absorption of nanofluids containing metallic nanoellipsoids
J. Sol. Energ. Eng. Lee 134 2012 10.1115/1.4005756 Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption
Sol. Energy Mater. Sol. Cells Lee 209 2020 10.1016/j.solmat.2020.110442 Synthesis of therminol-based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients
Nanoscale Liu 9 14854 2017 10.1039/C7NR03912C Full-spectrum volumetric solar thermal conversion via photonic nanofluids
Int. J. Heat Mass Transf. Wang 116 825 2018 10.1016/j.ijheatmasstransfer.2017.09.014 A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies
Renew. Energy Qin 145 21 2020 10.1016/j.renene.2019.05.133 Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector
J. Quant. Spectrosc. Ra Chen 2020 10.1016/j.jqsrt.2020.107029 Coupled plasmon resonances of au thorn nanoparticles to enhance solar absorption performance
Opt. Express Qin 28 15731 2020 10.1364/OE.393351 Absorption characteristics of a metal-insulator-metal nanodisk for solar thermal applications
Sol. Energy Jeon 132 247 2016 10.1016/j.solener.2016.03.022 Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluids
Energy Convers. Manage. He 73 150 2013 10.1016/j.enconman.2013.04.019 Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems
Sol. Energy Jin 139 278 2016 10.1016/j.solener.2016.09.021 Photothermal conversion efficiency of nanofluids: An experimental and numerical study
Int. J. Heat Mass Transf. Chen 108 1894 2017 10.1016/j.ijheatmasstransfer.2017.01.005 Investigation into Au nanofluids for solar photothermal conversion
Renew. Energ Bhalla 123 616 2018 10.1016/j.renene.2018.01.042 Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector
Sol. Energy Wang 184 240 2019 10.1016/j.solener.2019.04.013 Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion
Appl. Therm. Eng. Guo 2020 10.1016/j.applthermaleng.2020.115207 Introducing optical fiber as internal light source into direct absorption solar collector for enhancing photo-thermal conversion performance of MWCNT-H2O nanofluids
Sol. Energy Qin 169 231 2018 10.1016/j.solener.2018.04.056 Optimization of the spectral absorption coefficient of a plasmonic nanofluid for a direct absorption solar collector
Sci. Rep. Seo 10 1 2020 10.1038/s41598-020-65811-6 Tailoring the spectral sbsorption coefficient of a blended plasmonic nanofluid using a customized genetic algorithm
Sol. Energy Qin 150 512 2017 10.1016/j.solener.2017.05.007 Optimization of a direct absorption solar collector with blended plasmonic nanofluids
Renew. Energy Gorji 106 274 2017 10.1016/j.renene.2017.01.031 Thermal and exergy optimization of a nanofluid-based direct absorption solar collector
Int. J. Energy Res. Chen 39 1843 2015 10.1002/er.3338 Numerical simulation on the optical and thermal performance of a modified integrated compound parabolic solar concentrator
Renew. Sustain. Energy Rev. Kumaresan 77 1363 2017 10.1016/j.rser.2017.01.171 Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors
Appl. Energy Yılmaz 225 135 2018 10.1016/j.apenergy.2018.05.014 Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review
J. Nanotechnol. Eng. Med. Khullar 3 2012 10.1115/1.4007387 Solar energy harvesting using nanofluids-based concentrating solar collector
Nanomaterials Xu 5 2131 2015 10.3390/nano5042131 Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator
Appl. Therm. Eng. Menbari 104 176 2016 10.1016/j.applthermaleng.2016.05.064 Heat transfer analysis and the effect of CuO/water nanofluid on direct absorption concentrating solar collector
Renew. Energy Dugaria 128 495 2018 10.1016/j.renene.2017.06.029 Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation
Sol. Energy O’Keeffe 159 44 2018 10.1016/j.solener.2017.10.066 Modelling the efficiency of a nanofluid-based direct absorption parabolic trough solar collector
Renew. Energy de los Rios 122 665 2018 10.1016/j.renene.2018.01.094 Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids
Energy Convers. Manage. Bortolato 150 693 2017 10.1016/j.enconman.2017.08.044 Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector
Renew. Energy Qin 143 24 2019 10.1016/j.renene.2019.04.146 Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids
Int. J. Energy Res. Qin 4015 2020 10.1002/er.5165 Comparative analysis of direct-absorption parabolic-trough solar collectors considering concentric nanofluid segmentation
Bohren 1983 Absorption and Scattering of Light by Small Particles
Appl. Energy Cheng 115 559 2014 10.1016/j.apenergy.2013.11.001 Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model
Energy Fan 142 920 2018 10.1016/j.energy.2017.10.076 Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector
Modest 2013 Radiative Heat Transfer
Int. J. Renew. Energy Res. Kasaeian 6 15 2016 Optical and thermal investigation of selective coatings for solar absorber tube
Incropera 2013 Principles of Heat and Mass Transfer
Solutia 2013 Therminol VP-1 vapor phase liquid phase heat transfer fluid 12∘C to 400∘C
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.