$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Alginate-based hydrogels for cancer therapy and research

International journal of biological macromolecules, v.170, 2021년, pp.424 - 436  

Reig-Vano, Belen (Department of Chemical Engineering, Universitat Rovira i Virgili) ,  Tylkowski, Bartosz (Eurecat, Centre Tecnolò) ,  Montané, Xavier (gic de Catalunya, Chemical Technologies Unit) ,  Giamberini, Marta (Department of Analytic Chemistry and Organic Chemistry, Universitat Rovira i Virgili)

Abstract AI-Helper 아이콘AI-Helper

Abstract Cancer is a major health issue concerning to all of us. Current treatment options are still limited due to not-selective action. Encapsulation is contemplated as an innovative approach to address systemic toxicity and tumor resistance caused by traditional therapies, while increasing encap...

Keyword

참고문헌 (119)

  1. CA Cancer J. Clin. Bray 68 394 2018 10.3322/caac.21492 Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries 

  2. Sci. Rep. Ammendola 10 2020 10.1038/s41598-020-63444-3 Stability and anti-proliferative properties of biologically active compounds extracted from Cistus L. after sterilization treatments 

  3. International Agency for Research on Cancer 2018 Latest global cancer data 

  4. 10.3332/ecancer.2019.961 C. Pucci, C. Martinelli, G. Ciofani, Innovative approaches for cancer treatment: current perspectives and new challenges, Ecancermedicalscience 13 (2019) 961. doi:https://doi.org/10.3332/ecancer.2019.961. 

  5. Molecules Montané 25 2020 10.3390/molecules25071605 Encapsulation for cancer therapy 

  6. M.K. Mishra (Ed.), Handbook of Encapsulation and Controlled Release: Chapter 14: Ionotropic Gelation and Polyelectrolyte Complexation Technique: Novel Approach to Drug Encapsulation, 2016. 

  7. Int. J. Pharm. Wong 537 223 2018 10.1016/j.ijpharm.2017.12.036 Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin 

  8. 10.1515/9783110434330-004 Bartosz Tylkowski and Renata Jastrząb, Smart Capsules for Lead Removal from Industrial Wastewater Volume 17 (2017). 

  9. M.N. Singh, K.S.Y. Hemant, M. Ram, H.G. Shivakumar, Microencapsulation: a promising technique for controlled drug delivery, Research in pharmaceutical sciences 5 (2010) 65-77. 

  10. Crit. Rev. Biotechnol. Hudson 34 161 2014 10.3109/07388551.2012.743503 Biopolymer nanoparticle production for controlled release of biopharmaceuticals 

  11. 10.1016/j.addr.2014.01.010 Bhujbal SV, de Vos P, Niclou SP, Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors, Adv. Drug Deliv. Rev. 67-68 (2014) 142-153. doi:https://doi.org/10.1016/j.addr.2014.01.010. 

  12. Coord. Chem. Rev. Marturano 398 2019 10.1016/j.ccr.2019.213013 Photo-triggered capsules based on lanthanide-doped upconverting nanoparticles for medical applications 

  13. Polym.-Plast. Technol. Eng. Nasir 54 325 2015 10.1080/03602559.2014.958780 A review on preparation, properties and applications of polymeric nanoparticle-based materials 

  14. Colloids Surf. B: Biointerfaces Miranda 192 2020 10.1016/j.colsurfb.2020.111106 Targeted uptake of folic acid-functionalized polymeric nanoparticles loading glycoalkaloidic extract in vitro and in vivo assays 

  15. 10.2147/IJN.S53636 H.-C. Tsai, J.-Y. Lin, F. Maryani, C.-C. Huang, T. Imae, Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers, Int. J. Nanomedicine 8 (2013) 4427-4440. doi:https://doi.org/10.2147/IJN.S53636. 

  16. Journal of nanobiotechnology Gong 18 2020 10.1186/s12951-020-00649-8 Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy 

  17. J. Control. Release Li 321 222 2020 10.1016/j.jconrel.2020.02.025 Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy 

  18. Biomacromolecules Chen 21 1285 2020 10.1021/acs.biomac.0c00049 Tumor-adhesive and pH-degradable microgels by microfluidics and photo-cross-linking for efficient antiangiogenesis and enhanced cancer chemotherapy 

  19. Int. J. Biol. Macromol. Gularte 148 140 2020 10.1016/j.ijbiomac.2020.01.104 Preparation, characterization and antitumor activity of a cationic starch-derivative membrane embedded with a β-cyclodextrin/curcumin inclusion complex 

  20. J. Control. Release Jiang 320 442 2020 10.1016/j.jconrel.2020.01.036 Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration 

  21. J. Control. Release Zamboni 263 18 2017 10.1016/j.jconrel.2017.03.384 Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma 

  22. 10.1002/adhm.201801359 Y. Liu, Y. Li, D. Keskin, L. Shi, Poly(β-amino esters): synthesis, formulations, and their biomedical applications, Advanced Healthcare Materials 8 (2019) e1801359. doi:https://doi.org/10.1002/adhm.201801359. 

  23. Biomaterials Jin 153 49 2018 10.1016/j.biomaterials.2017.10.040 A PTX/nitinol stent combination with temperature-responsive phase-change 1-hexadecanol for magnetocaloric drug delivery: Magnetocaloric drug release and esophagus tissue penetration 

  24. Int. J. Biol. Macromol. Uyen 153 1035 2020 10.1016/j.ijbiomac.2019.10.233 Fabrication of alginate microspheres for drug delivery: a review 

  25. Polymers Minzanova 10 2018 10.3390/polym10121407 Biological activity and pharmacological application of pectic polysaccharides: a review 

  26. Int. J. Biol. Macromol. Matos 154 1265 2020 10.1016/j.ijbiomac.2019.11.001 Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: iontophoresis further enhances drug delivery ex vivo 

  27. Carbohydr. Polym. Tian 242 2020 10.1016/j.carbpol.2020.116401 Cyclodextrin as a magic switch in covalent and non-covalent anticancer drug release systems 

  28. Eur. J. Med. Chem. Li 199 2020 10.1016/j.ejmech.2020.112367 Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy 

  29. Biomaterials science Hou 8 353 2020 10.1039/C9BM01472A Responsive agarose hydrogel incorporated with natural humic acid and MnO2 nanoparticles for effective relief of tumor hypoxia and enhanced photo-induced tumor therapy 

  30. Molecules Bayer 25 2020 10.3390/molecules25112649 Hyaluronic acid and controlled release: a review 

  31. Int. J. Biol. Macromol. Sun 132 487 2019 10.1016/j.ijbiomac.2019.03.225 Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil 

  32. Carbohydr. Polym. Oliveira 239 2020 10.1016/j.carbpol.2020.116131 A review on fucoidan antitumor strategies: from a biological active agent to a structural component of fucoidan-based systems 

  33. Carbohydr. Polym. Wei 241 2020 10.1016/j.carbpol.2020.116351 Simultaneous Diels-Alder click reaction and starch hydrogel microsphere production via spray drying 

  34. 10.1016/j.msec.2020.110799 J.M. Korde, B. Kandasubramanian, Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies, Materials Science & Engineering C-Materials for Biological Applications 111 (2020) 110799. doi:https://doi.org/10.1016/j.msec.2020.110799. 

  35. Journal of Drug Delivery Science and Technology Tebaldi 51 115 2019 10.1016/j.jddst.2019.02.007 Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): current advances in synthesis methodologies, antitumor applications and biocompatibility 

  36. 10.1080/09205063.2020.1788371 L. Wang, J. Du, X. Han, J. Dou, J. Shen, J. Yuan, Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers, journal of biomaterials science. Polymer edition (2020) 1-13. doi:https://doi.org/10.1080/09205063.2020.1788371. 

  37. Journal of Drug Delivery Science and Technology Nazeri 57 2020 10.1016/j.jddst.2020.101669 5-aminopyrazole-conjugated gelatin hydrogel: a controlled 5-fluorouracil delivery system for rectal administration 

  38. Nanotechnology Borlan 31 2020 10.1088/1361-6528/ab8b90 Design of fluorophore-loaded human serum albumin nanoparticles for specific targeting of NIH:OVCAR3 ovarian cancer cells 

  39. J. Micromech. Microeng. Correa 30 2020 10.1088/1361-6439/ab8ebf Microfluidic fabrication of stable collagen microgels with aligned microstructure using flow-driven co-deposition and ionic gelation 

  40. Polymers Venkatesan 8 2016 10.3390/polym8020030 Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery 

  41. Int. J. Chem. Eng. Henao 1 2018 10.1155/2018/3137167 Polyelectrolyte complexation versus ionotropic gelation for chitosan-based hydrogels with carboxymethylcellulose, carboxymethyl starch, and alginic acid 

  42. Prog. Polym. Sci. Lee 37 106 2012 10.1016/j.progpolymsci.2011.06.003 Alginate: properties and biomedical applications 

  43. 10.1155/2014/926157 A. Sosnik, Alginate particles as platform for drug delivery by the oral route: state-of-the-art, ISRN pharmaceutics 2014 (2014) 926157. doi:https://doi.org/10.1155/2014/926157. 

  44. Expert opinion on drug delivery Lopes 14 769 2017 10.1080/17425247.2016.1214564 Preparation methods and applications behind alginate-based particles 

  45. 10.1007/978-981-10-6910-9_3 A. Gonzalez-Pujana, G. Orive, J.L. Pedraz, E. Santos-Vizcaino, R.M. Hernandez, Alginate Microcapsules for Drug Delivery vol. 11 67-100. doi:https://doi.org/10.1007/978-981-10-6910-9_3. 

  46. J. Chem. Technol. Biotechnol. Hay 85 752 2010 10.1002/jctb.2372 Bacterial biosynthesis of alginates 

  47. Int. J. Pharm. Dhamecha 569 2019 10.1016/j.ijpharm.2019.118627 Applications of alginate microspheres in therapeutics delivery and cell culture: past, present and future 

  48. Biomaterials Pawar 33 3279 2012 10.1016/j.biomaterials.2012.01.007 Alginate derivatization: a review of chemistry, properties and applications 

  49. Crit. Rev. Food Sci. Nutr. Ching 57 1133 2017 10.1080/10408398.2014.965773 Alginate gel particles: a review of production techniques and physical properties 

  50. J. Microencapsul. Dorati 33 137 2016 10.3109/02652048.2015.1134691 Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus-oocyte complexes culture 

  51. Int. J. Biol. Macromol. Boi 156 454 2020 10.1016/j.ijbiomac.2020.04.083 Alginate microbeads with internal microvoids for the sustained release of drugs 

  52. Int. J. Biol. Macromol. Upadhyay 115 907 2018 10.1016/j.ijbiomac.2018.04.123 Development of biopolymers based interpenetrating polymeric network of capecitabine: a drug delivery vehicle to extend the release of the model drug 

  53. 10.1007/978-981-10-6910-9 Rehm, Bernd H.A., Moradali, Fata (Ed.), Alginates and their Biomedical Applications, Springer Singapore, 2018. 

  54. Sapana P. Ahirrao, Paraag S. Gide, B. Shrivastav, Pankaj Sharma, Ionotropic gelation: a promising cross linking technique for hydrogels, research & reviews: Journal of Pharmaceutics and Nanotechnology 2 (2014) 1-6. 

  55. Crit. Rev. Ther. Drug Carrier Syst. Manjanna 27 509 2010 10.1615/CritRevTherDrugCarrierSyst.v27.i6.20 Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis 

  56. Int. J. Pharm. Wang 515 176 2016 10.1016/j.ijpharm.2016.10.002 Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis 

  57. Artificial cells, nanomedicine, and biotechnology Qian 44 270 2016 10.3109/21691401.2014.942458 Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair 

  58. Int. J. Biol. Macromol. Batool 150 315 2020 10.1016/j.ijbiomac.2020.02.042 Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery 

  59. Int. J. Biol. Macromol. El-Batal 156 1584 2020 10.1016/j.ijbiomac.2019.11.210 Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells 

  60. Int. J. Biol. Macromol. Chen 155 1450 2020 10.1016/j.ijbiomac.2019.11.122 Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent 

  61. 10.2147/DDDT.S158001 H. Shen, F. Li, D. Wang, Z. Yang, C. Yao, Y. Ye, X. Wang, Chitosan-alginate BSA-gel-capsules for local chemotherapy against drug-resistant breast cancer, Drug Design, Development and Therapy 12 (2018) 921-934. doi:https://doi.org/10.2147/DDDT.S158001. 

  62. J. Biol. Eng. Abasalizadeh 14 2020 Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting 

  63. Macromol. Biosci. Augst 6 623 2006 10.1002/mabi.200600069 Alginate hydrogels as biomaterials 

  64. Dev. Comp. Immunol. Plant 35 1256 2011 10.1016/j.dci.2011.03.007 Advances in fish vaccine delivery 

  65. 10.1016/B978-0-12-811448-3.00007-3 B. Wang, T.O. Akanbi, D. Agyei, B.J. Holland, C.J. Barrow, Coacervation Technique as an Encapsulation and Delivery Tool for Hydrophobic Biofunctional Compounds 235-261. doi:https://doi.org/10.1016/B978-0-12-811448-3.00007-3. 

  66. Wiley interdisciplinary reviews. Nanomedicine and Nanobiotechnology Blocher 9 2017 10.1002/wnan.1442 Complex coacervate-based materials for biomedicine 

  67. Adv. Drug Deliv. Rev. Alvarez-Lorenzo 65 1148 2013 10.1016/j.addr.2013.04.016 Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery 

  68. 10.1016/j.colsurfb.2018.03.015 J.P. Senna, T.N. Barradas, S. Cardoso, T.C. Castiglione, M.J. Serpe, K.G.d.H.E. Silva, C.R.E. Mansur, Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B, Colloids Surf. B: Biointerfaces 166 (2018) 187-194. doi:https://doi.org/10.1016/j.colsurfb.2018.03.015. 

  69. J. Biomater. Sci. Polym. Ed. Kwon 27 1520 2016 10.1080/09205063.2016.1215800 Redox-responsive alginate microsphere containing cystamine 

  70. Futur. Cardiol. Fassett 5 333 2009 10.2217/fca.09.19 Astaxanthin, oxidative stress, inflammation and cardiovascular disease 

  71. PLoS One Lin 11 2016 Improving the stability of astaxanthin by microencapsulation in calcium alginate beads 

  72. 10.1007/s12010-019-03174-z X. Zhang, W. Li, X. Dou, de Nan, G. He, Astaxanthin encapsulated in biodegradable calcium alginate microspheres for the treatment of hepatocellular carcinoma in vitro, Appl. Biochem. Biotechnol. 191 (2020) 511-527. doi:https://doi.org/10.1007/s12010-019-03174-z. 

  73. Pharmaceutics Lian 12 2019 10.3390/pharmaceutics12010021 Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy 

  74. Crit. Rev. Ther. Drug Carrier Syst. Patil 25 1 2008 10.1615/CritRevTherDrugCarrierSyst.v25.i1.10 Engineered nanocarriers of doxorubicin: a current update 

  75. ACS Biomater. Sci. Eng. Jia 2 1641 2016 10.1021/acsbiomaterials.6b00443 PEGylated oxidized alginate-DOX prodrug conjugate nanoparticles cross-linked with fluorescent carbon dots for tumor Theranostics 

  76. J. Mater. Chem. B Talebian 8 5064 2020 10.1039/D0TB00052C Coaxial mussel-inspired biofibers: making of a robust and efficacious depot for cancer drug delivery 

  77. Int. J. Biol. Macromol. Rezk 141 388 2019 10.1016/j.ijbiomac.2019.09.013 Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: towards cancer chemotherapy 

  78. 10.1016/j.ijbiomac.2016.01.037 P.R. Sarika, N.R. James, P.R.A. Kumar, D.K. Raj, Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes, Int. J. Biol. Macromol. 86 (2016) 1-9. doi:https://doi.org/10.1016/j.ijbiomac.2016.01.037. 

  79. J. Drug Target. Liu 24 694 2016 10.3109/1061186X.2016.1157883 Oral bioavailability of curcumin: problems and advancements 

  80. Int. J. Biol. Macromol. Sohail 153 36 2020 10.1016/j.ijbiomac.2020.02.191 Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy 

  81. 10.4103/0973-1482.139743 Z. Song, X. Xu, Advanced research on anti-tumor effects of amygdalin, J. Cancer Res. Ther. 10 Suppl 1 (2014) 3-7. doi:https://doi.org/10.4103/0973-1482.139743. 

  82. 10.1208/s12249-020-01735-8 M.'t.M. Alsmadi, R.M. Obaidat, M. Alnaief, B.A. Albiss, N. Hailat, Development, in vitro characterization, and in vivo toxicity evaluation of chitosan-alginate Nanoporous carriers loaded with cisplatin for lung cancer treatment, AAPS PharmSciTech 21 (2020) 191. doi:https://doi.org/10.1208/s12249-020-01735-8. 

  83. Molecules Hassani 25 2020 10.3390/molecules25092244 Formulation, characterization and biological activity screening of sodium alginate-gum Arabic nanoparticles loaded with curcumin 

  84. 10.1016/j.msec.2020.110686 G. Chen, L. He, P. Zhang, J. Zhang, X. Mei, D. Wang, Y. Zhang, X. Ren, Z. Chen, Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway, Mater. Sci. Eng. C Mater. Biol. Appl. 110 (2020) 110686. doi:https://doi.org/10.1016/j.msec.2020.110686. 

  85. ChemistrySelect Dalei 5 2168 2020 10.1002/slct.201904449 Controlled release of 5-fluorouracil from alginate hydrogels by cold HMDSO−plasma surface engineering 

  86. 10.1002/adtp.201900113 R. Hosseinzadeh, B. Mirani, E. Pagan, S. Mirzaaghaei, A. Nasimian, P. Kawalec, S.C. Silva Rosa, D. Hamdi, N.P. Fernandez, B.D. Toyota, J.W. Gordon, S. Ghavami, M. Akbari, A drug-eluting 3D-printed mesh (GlioMesh) for management of glioblastoma, Advanced Therapeutics 2 (2019) 1900113. doi:https://doi.org/10.1002/adtp.201900113. 

  87. Int. J. Biol. Macromol. Elbialy 154 114 2020 10.1016/j.ijbiomac.2020.03.027 Alginate-coated caseinate nanoparticles for doxorubicin delivery: preparation, characterisation, and in vivo assessment 

  88. Adv. Polym. Technol. Xing 1 2020 10.1155/2020/8749238 Synthesis of polymer assembled mesoporous CaCO 3 nanoparticles for molecular targeting and pH-responsive controlled drug release 

  89. 10.1016/j.msec.2019.110380 Y. Yun, H. Wu, J. Gao, W. Dai, L. Deng, O. Lv, Y. Kong, Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier, Mater. Sci. Eng. C Mater. Biol. Appl. 108 (2020) 110380. doi:https://doi.org/10.1016/j.msec.2019.110380. 

  90. Int. J. Pharm. Wei 580 2020 10.1016/j.ijpharm.2020.119219 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer 

  91. Nanomaterials Song 8 2018 10.3390/nano8110907 Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells 

  92. Int. J. Biol. Macromol. Amani 141 1258 2019 10.1016/j.ijbiomac.2019.09.048 pH-responsive hybrid magnetic polyelectrolyte complex based on alginate/BSA as efficient nanocarrier for curcumin encapsulation and delivery 

  93. Int. J. Biol. Macromol. Baghbani 93 512 2016 10.1016/j.ijbiomac.2016.09.008 Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer 

  94. Acta Biomater. Wu 106 278 2020 10.1016/j.actbio.2020.02.021 Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy 

  95. Int. J. Biol. Macromol. Ibrahim 146 119 2020 10.1016/j.ijbiomac.2019.12.266 Alginate based tamoxifen/metal dual core-folate decorated shell: nanocomposite targeted therapy for breast cancer via ROS-driven NF-κB pathway modulation 

  96. Journal of Nanomedicine & Nanotechnology IbrahimM 06 1 2015 10.4172/2157-7439.1000265 Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee 

  97. Int. J. Biol. Macromol. Bilal 105 393 2017 10.1016/j.ijbiomac.2017.07.047 Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities 

  98. Eur. J. Pharm. Sci. Alamzadeh 145 2020 10.1016/j.ejps.2020.105235 Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy 

  99. Journal of Drug Delivery Science and Technology Bautista 54 2019 10.1016/j.jddst.2019.101296 Nanodelivery system based on zein-alginate complexes enhances in vitro chemopreventive activity and bioavailability of pomelo [Citrus maxima (Burm.) Merr.] seed limonoids 

  100. 10.1007/s13197-020-04369-7 P. Kiaei Pour, I. Alemzadeh, A.S. Vaziri, A. Beiroti, Potential effects of alginate-pectin biocomposite on the release of folic acid and their physicochemical characteristics, J. Food Sci. Technol.. doi:https://doi.org/10.1007/s13197-020-04369-7. 

  101. Starch - Stärke Sarangi 2020 10.1002/star.201900307 Tailoring of colon targeting with sodium alginate-Assam bora rice starch based multi particulate system containing naproxen 

  102. H. Raza, N.M. Ranjha, R. Razzaq, M. Ansari, A. Mahmood, Z. Rashid, Fabrication and in vitro evaluation on 5-fluorouracil loaded choindroitin sulfate-sodium alginate microspheres for colon specific delivery, Acta Pol. Pharm. 73 (2016) 495-507. 

  103. Toxicol. in Vitro Shad 65 2020 10.1016/j.tiv.2019.104756 Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line) 

  104. Int. J. Biol. Macromol. Rajpoot 151 830 2020 10.1016/j.ijbiomac.2020.02.132 Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach 

  105. J. Microencapsul. Sudareva 33 487 2016 10.1080/02652048.2016.1206146 Alginate-containing systems for oral delivery of superoxide dismutase. Comparison of various configurations and their properties 

  106. 10.2147/IJN.S75877 G. Mahidhara, R.K. Kanwar, K. Roy, J.R. Kanwar, Oral administration of iron-saturated bovine lactoferrin-loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism, Int. J. Nanomedicine 10 (2015) 4081-4098. doi:https://doi.org/10.2147/IJN.S75877. 

  107. Molecular Therapy - Nucleic Acids Goldshtein 16 378 2019 10.1016/j.omtn.2019.03.006 Co-assembled Ca2+ alginate-sulfate nanoparticles for intracellular plasmid DNA delivery 

  108. J. Cell. Physiol. Rostami 2020 10.1002/jcp.29781 Coinhibition of S1PR1 and GP130 by siRNA-loaded alginate-conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells 

  109. Ther. Deliv. Gandhi 4 327 2013 10.4155/tde.12.163 Alginate-based strategies for therapeutic vascularization 

  110. 10.3390/md9122572 M. Borgogna, B. Bellich, A. Cesàro, Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea", Marine drugs 9 (2011) 2572-2604. doi:https://doi.org/10.3390/md9122572. 

  111. 10.1021/bm060010d Y.A. Mørch, I. Donati, B.L. Strand, G. Skjåk-Braek, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads, Biomacromolecules 7 (2006) 1471-1480. doi:https://doi.org/10.1021/bm060010d. 

  112. J. Drug Target. Saenz del Burgo 23 170 2015 10.3109/1061186X.2014.971327 Microencapsulation of therapeutic bispecific antibodies producing cells: immunotherapeutic organoids for cancer management 

  113. Neuro-oncology Johansson 15 1200 2013 10.1093/neuonc/not054 The soluble form of the tumor suppressor Lrig1 potently inhibits in vivo glioma growth irrespective of EGF receptor status 

  114. J. Microencapsul. Funaro 33 64 2016 10.3109/02652048.2015.1115902 Effect of alginate microencapsulation on the catalytic efficiency and in vitro enzyme-prodrug therapeutic efficacy of cytosine deaminase and of recombinant E. coli expressing cytosine deaminase 

  115. Int. J. Biochem. Cell Biol. Mandal 110 59 2019 10.1016/j.biocel.2019.02.001 Encapsulated human mesenchymal stem cells (eMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: development of 3D primed therapeutic MSCs 

  116. 10.1002/biot.201900439 A. Kletzmayr, F. Clement Frey, M. Zimmermann, D. Eberli, C. Millan, An automatable hydrogel culture platform for evaluating efficacy of antibody-based therapeutics in overcoming Chemoresistance, Biotechnol. J. 15 (2020) e1900439. doi:https://doi.org/10.1002/biot.201900439. 

  117. Bioprocess Biosyst. Eng. El-Sayed 43 997 2020 10.1007/s00449-020-02295-8 Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads 

  118. 10.1021/acssensors.8b01465 L. Zhao, S. Yin, Z. Ma, Ca2+-triggered pH-response sodium alginate hydrogel precipitation for amplified sandwich-type impedimetric immunosensor of tumor marker, ACS sensors 4 (2019) 450-455. doi:https://doi.org/10.1021/acssensors.8b01465. 

  119. Quantitative Imaging in Medicine and Surgery Lee 10 779 2020 10.21037/qims.2020.02.24 Indocyanine green-loaded injectable alginate hydrogel as a marker for precision cancer surgery 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로