$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Flatband Line States in Photonic Super‐Honeycomb Lattices 원문보기

Advanced optical materials, v.8 no.11, 2020년, pp.1902174 -   

Yan, Wenchao (The MOE Key Laboratory of Weak‐) ,  Zhong, Hua (Light Nonlinear Photonics TEDA Applied Physics Institute and School of Physics Nankai University Tianjin 300457 China) ,  Song, Daohong (Department of Applied Physics School of Science Xi'an Jiaotong University Xi'an 710049 China) ,  Zhang, Yiqi (The MOE Key Laboratory of Weak‐) ,  Xia, Shiqi (Light Nonlinear Photonics TEDA Applied Physics Institute and School of Physics Nankai University Tianjin 300457 China) ,  Tang, Liqin (Department of Applied Physics School of Science Xi'an Jiaotong University Xi'an 710049 China) ,  Leykam, Daniel (The MOE Key Laboratory of Weak‐) ,  Chen, Zhigang (Light Nonlinear Photonics TEDA Applied Physics Institute and School of Physics Nankai University Tianjin 300457 China)

Abstract AI-Helper 아이콘AI-Helper

AbstractFor the first time, a photonic super‐honeycomb lattice (sHCL) is established experimentally by use of a continuous‐wave laser writing technique, and thereby two distinct flatband line states that manifest as noncontractible loop states in an infinite flatband lattice are demons...

참고문헌 (47)

  1. Leykam, Daniel, Andreanov, Alexei, Flach, Sergej. Artificial flat band systems: from lattice models to experiments. Advances in physics: x, vol.3, no.1, 1473052-.

  2. Leykam, Daniel, Flach, Sergej. Perspective: Photonic flatbands. APL photonics, vol.3, no.7, 070901-.

  3. Li, Zhi, Zhuang, Jincheng, Wang, Li, Feng, Haifeng, Gao, Qian, Xu, Xun, Hao, Weichang, Wang, Xiaolin, Zhang, Chao, Wu, Kehui, Dou, Shi Xue, Chen, Lan, Hu, Zhenpeng, Du, Yi. Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Science advances, vol.4, no.11, eaau4511-.

  4. Drost, Robert, Ojanen, Teemu, Harju, Ari, Liljeroth, Peter. Topological states in engineered atomic lattices. Nature physics, vol.13, no.7, 668-671.

  5. Slot, Marlou R., Gardenier, Thomas S., Jacobse, Peter H., van Miert, Guido C.P., Kempkes, Sander N., Zevenhuizen, Stephan J.M., Smith, Cristiane Morais, Vanmaekelbergh, Daniel, Swart, Ingmar. Experimental realization and characterization of an electronic Lieb lattice. Nature physics, vol.13, no.7, 672-676.

  6. Ozawa, Hideki, Taie, Shintaro, Ichinose, Tomohiro, Takahashi, Yoshiro. Interaction-Driven Shift and Distortion of a Flat Band in an Optical Lieb Lattice. Physical review letters, vol.118, no.17, 175301-.

  7. Whittaker, C. E., Cancellieri, E., Walker, P. M., Gulevich, D. R., Schomerus, H., Vaitiekus, D., Royall, B., Whittaker, D. M., Clarke, E., Iorsh, I. V., Shelykh, I. A., Skolnick, M. S., Krizhanovskii, D. N.. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling. Physical review letters, vol.120, no.9, 097401-.

  8. BERGHOLTZ, EMIL J., LIU, ZHAO. TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS. International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics, vol.27, no.24, 1330017-.

  9. Sun, Kai, Gu, Zhengcheng, Katsura, Hosho, Das Sarma, S.. Nearly Flatbands with Nontrivial Topology. Physical review letters, vol.106, no.23, 236803-.

  10. Leykam, Daniel, Flach, Sergej, Bahat-Treidel, Omri, Desyatnikov, Anton S.. Flat band states: Disorder and nonlinearity. Physical review. B, Condensed matter and materials physics, vol.88, no.22, 224203-.

  11. Wu, Congjun, Bergman, Doron, Balents, Leon, Das Sarma, S.. Flat Bands and Wigner Crystallization in the Honeycomb Optical Lattice. Physical review letters, vol.99, no.7, 070401-.

  12. Taie, Shintaro, Ozawa, Hideki, Ichinose, Tomohiro, Nishio, Takuei, Nakajima, Shuta, Takahashi, Yoshiro. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Science advances, vol.1, no.10, e1500854-.

  13. Peotta, Sebastiano, Törmä, Päivi. Superfluidity in topologically nontrivial flat bands. Nature communications, vol.6, 8944-.

  14. Baboux, F., Ge, L., Jacqmin, T., Biondi, M., Galopin, E., Lemaître, A., Le Gratiet, L., Sagnes, I., Schmidt, S., Türeci, H. E., Amo, A., Bloch, J.. Bosonic Condensation and Disorder-Induced Localization in a Flat Band. Physical review letters, vol.116, no.6, 066402-.

  15. Goblot, V., Rauer, B., Vicentini, F., Le Boité, A., Galopin, E., Lemaître, A., Le Gratiet, L., Harouri, A., Sagnes, I., Ravets, S., Ciuti, C., Amo, A., Bloch, J.. Nonlinear Polariton Fluids in a Flatband Reveal Discrete Gap Solitons. Physical review letters, vol.123, no.11, 113901-.

  16. Nandy, Atanu, Pal, Biplab, Chakrabarti, Arunava. Flat band analogues and flux driven extended electronic states in a class of geometrically frustrated fractal networks. Journal of physics, an Institute of Physics journal. Condensed matter, vol.27, no.12, 125501-.

  17. Hyrkäs, M., Apaja, V., Manninen, M.. Many-particle dynamics of bosons and fermions in quasi-one-dimensional flat-band lattices. Physical review. A. Atomic, molecular, and optical physics, vol.87, no.2, 023614-.

  18. Maimaiti, Wulayimu, Andreanov, Alexei, Park, Hee Chul, Gendelman, Oleg, Flach, Sergej. Compact localized states and flat-band generators in one dimension. Physical review. B, vol.95, no.11, 115135-.

  19. Ramachandran, Ajith, Andreanov, Alexei, Flach, Sergej. Chiral flat bands: Existence, engineering, and stability. Physical review. B, vol.96, no.16, 161104-.

  20. Nandy, Atanu. Robust flat band and flux induced engineering of dispersive band in a periodic lattice. The European physical journal. B : Condensed Matter Physics, vol.92, no.9, 213-.

  21. Nandy, Atanu, Mukherjee, Amrita. Flux modulated flat band engineering in square-kagomé ladder network. Physics letters: A, vol.383, no.19, 2318-2325.

  22. Nandy, Atanu, Chakrabarti, Arunava. Engineering slow light and mode crossover in a fractal-kagome waveguide network. Physical review. A, vol.93, no.1, 013807-.

  23. Leykam, Daniel, Bodyfelt, Joshua D., Desyatnikov, Anton S., Flach, Sergej. Localization of weakly disordered flat band states. The European physical journal. B : Condensed Matter Physics, vol.90, no.1,

  24. Sutherland, Bill. Localization of electronic wave functions due to local topology. Physical review. B, Condensed matter, vol.34, no.8, 5208-5211.

  25. Lieb, Elliott H.. Two theorems on the Hubbard model. Physical review letters, vol.62, no.10, 1201-1204.

  26. Weimann, Steffen, Morales-Inostroza, Luis, Real, Bastián, Cantillano, Camilo, Szameit, Alexander, Vicencio, Rodrigo A.. Transport in Sawtooth photonic lattices. Optics letters, vol.41, no.11, 2414-.

  27. Travkin, Evgenij, Diebel, Falko, Denz, Cornelia. Compact flat band states in optically induced flatland photonic lattices. Applied physics letters, vol.111, no.1, 011104-.

  28. Mukherjee, Sebabrata, Spracklen, Alexander, Choudhury, Debaditya, Goldman, Nathan, Öhberg, Patrik, Andersson, Erika, Thomson, Robert R.. Observation of a Localized Flat-Band State in a Photonic Lieb Lattice. Physical review letters, vol.114, no.24, 245504-.

  29. Vicencio, Rodrigo A., Cantillano, Camilo, Morales-Inostroza, Luis, Real, Bastián, Mejía-Cortés, Cristian, Weimann, Steffen, Szameit, Alexander, Molina, Mario I.. Observation of Localized States in Lieb Photonic Lattices. Physical review letters, vol.114, no.24, 245503-.

  30. Zong, Yuanyuan, Xia, Shiqiang, Tang, Liqin, Song, Daohong, Hu, Yi, Pei, Yumiao, Su, Jing, Li, Yigang, Chen, Zhigang. Observation of localized flat-band states in Kagome photonic lattices. Optics express, vol.24, no.8, 8877-.

  31. Xia, Shiqiang, Hu, Yi, Song, Daohong, Zong, Yuanyuan, Tang, Liqin, Chen, Zhigang. Demonstration of flat-band image transmission in optically induced Lieb photonic lattices. Optics letters, vol.41, no.7, 1435-.

  32. Mukherjee, Sebabrata, Thomson, Robert R.. Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice. Optics letters, vol.40, no.23, 5443-.

  33. Nandy, A., Chakrabarti, A.. Engineering flat electronic bands in quasiperiodic and fractal loop geometries. Physics letters: A, vol.379, no.43, 2876-2882.

  34. Vidal, Julien, Mosseri, Rémy, Douçot, Benoit. Aharonov-Bohm Cages in Two-Dimensional Structures. Physical review letters, vol.81, no.26, 5888-5891.

  35. Mukherjee, Sebabrata, Di Liberto, Marco, Öhberg, Patrik, Thomson, Robert R., Goldman, Nathan. Experimental Observation of Aharonov-Bohm Cages in Photonic Lattices. Physical review letters, vol.121, no.7, 075502-.

  36. Longhi, Stefano. Photonic flat-band laser. Optics letters, vol.44, no.2, 287-.

  37. Bergman, Doron L., Wu, Congjun, Balents, Leon. Band touching from real-space topology in frustrated hopping models. Physical review. B, Condensed matter and materials physics, vol.78, no.12, 125104-.

  38. Rhim, Jun-Won, Yang, Bohm-Jung. Classification of flat bands according to the band-crossing singularity of Bloch wave functions. Physical review. B, vol.99, no.4, 045107-.

  39. Xia, Shiqi, Ramachandran, Ajith, Xia, Shiqiang, Li, Denghui, Liu, Xiuying, Tang, Liqin, Hu, Yi, Song, Daohong, Xu, Jingjun, Leykam, Daniel, Flach, Sergej, Chen, Zhigang. Unconventional Flatband Line States in Photonic Lieb Lattices. Physical review letters, vol.121, no.26, 263902-.

  40. Shima, Nobuyuki, Aoki, Hideo. Electronic structure of super-honeycomb systems: A peculiar realization of semimetal/semiconductor classes and ferromagnetism. Physical review letters, vol.71, no.26, 4389-4392.

  41. Aoki, Hideo, Ando, Masato, Matsumura, Hajime. Hofstadter butterflies for flat bands. Physical review. B, Condensed matter, vol.54, no.24, R17296-R17299.

  42. Lan, Zhihao, Goldman, Nathan, Öhberg, Patrik. Coexistence of spin-12and spin-1 Dirac-Weyl fermions in the edge-centered honeycomb lattice. Physical review. B, Condensed matter and materials physics, vol.85, no.15, 155451-.

  43. Zhong, Hua, Zhang, Yiqi, Zhu, Yi, Zhang, Da, Li, Changbiao, Zhang, Yanpeng, Li, Fuli, Belić, Milivoj R., Xiao, Min. Transport properties in the photonic super‐honeycomb lattice — a hybrid fermionic and bosonic system. Annalen der Physik : adp, vol.529, no.3, 1600258-.

  44. Adv. Phys.: X Leykam D. 101 1 2016 

  45. Wang, Aizhu, Zhao, Xinrui, Zhao, Mingwen, Zhang, Xiaoming, Feng, Yuanping, Liu, Feng. Kane Fermion in a Two-Dimensional π-Conjugated Bis(iminothiolato)nickel Monolayer. The journal of physical chemistry letters, vol.9, no.3, 614-619.

  46. Longhi, S.. Quantum‐optical analogies using photonic structures. Laser & photonics reviews, vol.3, no.3, 243-261.

  47. Garanovich, I.L., Longhi, S., Sukhorukov, A.A., Kivshar, Y.S.. Light propagation and localization in modulated photonic lattices and waveguides. Physics reports, vol.518, no.1, 1-79.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로