$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer 원문보기

Scientific reports, v.10, 2020년, pp.8905 -   

Ahn, Sung Jun (Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea) ,  Kwon, Hyeokjin (Department of Biomedical Engineering, Hanyang University, Seoul, Korea) ,  Yang, Jin-Ju (Department of Biomedical Engineering, Hanyang University, Seoul, Korea) ,  Park, Mina (Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea) ,  Cha, Yoon Jin (Department of Pathology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea) ,  Suh, Sang Hyun (Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea) ,  Lee, Jong-Min (Department of Biomedical Engineering, Hanyang University, Seoul, Korea)

Abstract AI-Helper 아이콘AI-Helper

Identification of EGFR mutations is critical to the treatment of primary lung cancer and brain metastases (BMs). Here, we explored whether radiomic features of contrast-enhanced T1-weighted images (T1WIs) of BMs predict EGFR mutation status in primary lung cancer cases. In total, 1209 features were ...

참고문헌 (78)

  1. 1. Wong MCS Lao XQ Ho KF Goggins WB Tse SLA Incidence and mortality of lung cancer: global trends and association with socioeconomic status Sci Rep 2017 7 14300 10.1038/s41598-017-14513-7 29085026 

  2. 2. Ferlay J Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012 Eur J Cancer 2013 49 1374 1403 10.1016/j.ejca.2012.12.027 23485231 

  3. 3. Nayak L Lee EQ Wen PY Epidemiology of brain metastases Curr Oncol Rep 2012 14 48 54 10.1007/s11912-011-0203-y 22012633 

  4. 4. Villano JL Incidence of brain metastasis at initial presentation of lung cancer Neuro Oncol 2015 17 122 128 10.1093/neuonc/nou099 24891450 

  5. 5. Al-Shamy G Sawaya R Management of brain metastases: the indispensable role of surgery J Neurooncol 2009 92 275 282 10.1007/s11060-009-9839-y 19357955 

  6. 6. Bernardo G First-line chemotherapy with vinorelbine, gemcitabine, and carboplatin in the treatment of brain metastases from non-small-cell lung cancer: a phase II study Cancer Invest 2002 20 293 302 10.1081/CNV-120001173 12025223 

  7. 7. Klos KJ O’Neill BP Brain metastases Neurologist 2004 10 31 46 10.1097/01.nrl.0000106922.83090.71 14720313 

  8. 8. Yan H IDH1 and IDH2 mutations in gliomas N Engl J Med 2009 360 765 773 10.1056/NEJMoa0808710 19228619 

  9. 9. Hegi ME Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity J Clin Oncol 2008 26 4189 4199 10.1200/JCO.2007.11.5964 18757334 

  10. 10. Weigelt B Baehner FL Reis-Filho JS The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade J Pathol 2010 220 263 280 10.1002/path.2648 19927298 

  11. 11. da Cunha Santos G Shepherd FA Tsao MS EGFR mutations and lung cancer Annu Rev Pathol 2011 6 49 69 10.1146/annurev-pathol-011110-130206 20887192 

  12. 12. Lynch TJ Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib N Engl J Med 2004 350 2129 2139 10.1056/NEJMoa040938 15118073 

  13. 13. Mok TS Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma N Engl J Med 2009 361 947 957 10.1056/NEJMoa0810699 19692680 

  14. 14. Johnson ML Association of KRAS and EGFR mutations with survival in patients with advanced lung adenocarcinomas Cancer 2013 119 356 362 10.1002/cncr.27730 22810899 

  15. 15. Masters GA Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update J Clin Oncol 2015 33 3488 3515 10.1200/JCO.2015.62.1342 26324367 

  16. 16. Novello S Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up Ann Oncol 2016 27 v1 v27 10.1093/annonc/mdw326 27664245 

  17. 17. Jung WS Park CH Hong CK Suh SH Ahn SJ Diffusion-Weighted Imaging of Brain Metastasis from Lung Cancer: Correlation of MRI Parameters with the Histologic Type and Gene Mutation Status AJNR Am J Neuroradiol 2018 39 273 279 10.3174/ajnr.A5516 29301782 

  18. 18. Kickingereder P Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response Clin Cancer Res 2016 22 5765 5771 10.1158/1078-0432.CCR-16-0702 27803067 

  19. 19. Itakura H Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities Sci Transl Med 2015 7 303ra138 10.1126/scitranslmed.aaa7582 26333934 

  20. 20. Zhou M Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: preliminary results Transl Oncol 2014 7 5 13 10.1593/tlo.13730 24772202 

  21. 21. Coroller TP Radiomic phenotype features predict pathological response in non-small cell lung cancer Radiother Oncol 2016 119 480 486 10.1016/j.radonc.2016.04.004 27085484 

  22. 22. Thawani R Radiomics and radiogenomics in lung cancer: A review for the clinician Lung Cancer 2018 115 34 41 10.1016/j.lungcan.2017.10.015 29290259 

  23. 23. Gillies RJ Kinahan PE Hricak H Radiomics: Images Are More than Pictures, They Are Data Radiology 2016 278 563 577 10.1148/radiol.2015151169 26579733 

  24. 24. Bhargava R Madabhushi A Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology Annu Rev Biomed Eng 2016 18 387 412 10.1146/annurev-bioeng-112415-114722 27420575 

  25. 25. Wu H Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography J Digit Imaging 2013 26 797 802 10.1007/s10278-012-9547-6 23325122 

  26. 26. Galloway, M. M. Texture analysis using grey level run lengths. NASA STI/Recon Technical Report N 75 (1974). 

  27. 27. Leung T Malik J Representing and recognizing the visual appearance of materials using three-dimensional textons International journal of computer vision 2001 43 29 44 10.1023/A:1011126920638 

  28. 28. Varma, M. & Zisserman, A. Classifying images of materials: Achieving viewpoint and illumination independence in European Conference on Computer Vision 255-271 (Springer, 2002). 

  29. 29. Varma M Zisserman A A statistical approach to texture classification from single images International journal of computer vision 2005 62 61 81 10.1007/s11263-005-4635-4 

  30. 30. Liu G-H Yang J-Y Image retrieval based on the texton co-occurrence matrix Pattern Recognition 2008 41 3521 3527 10.1016/j.patcog.2008.06.010 

  31. 31. Grossmann, P., Grove, O. & El-Hachem, N. Identification of molecular phenotypes in lung cancer by integrating radiomics and genomics. Sci Transl Med . 

  32. 32. Larkin TJ Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment Magn Reson Med 2014 71 402 410 10.1002/mrm.24644 23440731 

  33. 33. Trevor, H., Robert, T. & JH, F. The elements of statistical learning: data mining, inference, and prediction (New York, NY: Springer, 2009). 

  34. 34. Breiman L Random forests Machine learning 2001 45 5 32 10.1023/A:1010933404324 

  35. 35. Weston J Elisseeff A Scholkopf B Tipping M Use of the zero-norm with linear models and kernel methods Journal of machine learning research 2003 3 1439 1461 

  36. 36. Roffo, G., Melzi, S. & Cristani, M. Infinite feature selection in Proceedings of the IEEE International Conference on Computer Vision 4202?4210 (2015). 

  37. 37. Bradley, P. S. & Mangasarian, O. L. Feature selection via concave minimization and support vector machines in ICML , Vol. 98 82?90 (1998). 

  38. 38. Peng, H., Long, F. & Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis & Machine Intelligence , 1226?1238 (2005). 

  39. 39. Robnik-?ikonja M Kononenko I Theoretical and empirical analysis of ReliefF and RReliefF Machine learning 2003 53 23 69 10.1023/A:1025667309714 

  40. 40. He, X., Cai, D. & Niyogi, P. Laplacian score for feature selection in Advances in neural information processing systems 507?514 (2006). 

  41. 41. Kotsiantis SB Zaharakis ID Pintelas PE Machine learning: a review of classification and combining techniques Artificial Intelligence Review 2006 26 159 190 10.1007/s10462-007-9052-3 

  42. 42. Cho BC Phase II study of erlotinib in advanced non-small-cell lung cancer after failure of gefitinib J Clin Oncol 2007 25 2528 2533 10.1200/JCO.2006.10.4166 17577030 

  43. 43. Haralick Robert M. Shanmugam K. Dinstein Its'Hak Textural Features for Image Classification IEEE Transactions on Systems, Man, and Cybernetics 1973 SMC-3 6 610 621 10.1109/TSMC.1973.4309314 

  44. 44. Chu A Sehgal CM Greenleaf JF Use of gray value distribution of run lengths for texture analysis Pattern Recognition Letters 1990 11 415 419 10.1016/0167-8655(90)90112-F 

  45. 45. Martin DR Fowlkes CC Malik J Learning to detect natural image boundaries using local brightness, color, and texture cues IEEE Trans Pattern Anal Mach Intell 2004 26 530 549 10.1109/TPAMI.2004.1273918 15460277 

  46. 46. Geusebroek J-M Smeulders AW Van De Weijer J Fast anisotropic gauss filtering IEEE Transactions on Image Processing 2003 12 938 943 10.1109/TIP.2003.812429 18237967 

  47. 47. Gunn SR Support vector machines for classification and regression ISIS technical report 1998 14 5 16 

  48. 48. Kickingereder P Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features Radiology 2016 281 907 918 10.1148/radiol.2016161382 27636026 

  49. 49. Freund Y Schapire RE A decision-theoretic generalization of on-line learning and an application to boosting Journal of computer and system sciences 1997 55 119 139 10.1006/jcss.1997.1504 

  50. 50. Tibshirani R Regression shrinkage and selection via the lasso Journal of the Royal Statistical Society: Series B (Methodological) 1996 58 267 288 

  51. 51. Molinaro AM Simon R Pfeiffer RM Prediction error estimation: a comparison of resampling methods Bioinformatics 2005 21 3301 3307 10.1093/bioinformatics/bti499 15905277 

  52. 52. Ojala M Garriga GC Permutation tests for studying classifier performance Journal of Machine Learning Research 2010 11 1833 1863 

  53. 53. Nichols TE Holmes AP Nonparametric permutation tests for functional neuroimaging: a primer with examples Human brain mapping 2002 15 1 25 10.1002/hbm.1058 11747097 

  54. 54. Lambin P Radiomics: extracting more information from medical images using advanced feature analysis Eur J Cancer 2012 48 441 446 10.1016/j.ejca.2011.11.036 22257792 

  55. 55. Eichler AF EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer Neuro Oncol 2010 12 1193 1199 10.1093/neuonc/noq076 20627894 

  56. 56. Ithapu V Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies Human brain mapping 2014 35 4219 4235 10.1002/hbm.22472 24510744 

  57. 57. Kegl, B. The return of AdaBoost. MH: multi-class Hamming trees. arXiv preprint arXiv : 1312 . 6086 (2013). 

  58. 58. Moradi E Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects Neuroimage 2015 104 398 412 10.1016/j.neuroimage.2014.10.002 25312773 

  59. 59. Cortes C Vapnik V Support-vector networks Machine learning 1995 20 273 297 

  60. 60. Pekmezci M Perry A Neuropathology of brain metastases Surg Neurol Int 2013 4 S245 255 10.4103/2152-7806.111302 23717796 

  61. 61. Choi YS Incremental Prognostic Value of ADC Histogram Analysis over MGMT Promoter Methylation Status in Patients with Glioblastoma Radiology 2016 281 175 184 10.1148/radiol.2016151913 27120357 

  62. 62. Yeom KW Arterial spin-labeled perfusion of pediatric brain tumors AJNR Am J Neuroradiol 2014 35 395 401 10.3174/ajnr.A3670 23907239 

  63. 63. Kotrotsou A Zinn PO Colen RR Radiomics in Brain Tumors: An Emerging Technique for Characterization of Tumor Environment Magn Reson Imaging Clin N Am 2016 24 719 729 10.1016/j.mric.2016.06.006 27742112 

  64. 64. Kickingereder P Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models Radiology 2016 280 880 889 10.1148/radiol.2016160845 27326665 

  65. 65. Arlot S Celisse A A survey of cross-validation procedures for model selection Statistics surveys 2010 4 40 79 10.1214/09-SS054 

  66. 66. Sakurada A Shepherd FA Tsao MS Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations Clin Lung Cancer 2006 7 Suppl 4 S138 144 10.3816/clc.2006.s.005 16764754 

  67. 67. Shin DY EGFR mutation and brain metastasis in pulmonary adenocarcinomas J Thorac Oncol 2014 9 195 199 10.1097/JTO.0000000000000069 24419416 

  68. 68. Italiano A Comparison of the epidermal growth factor receptor gene and protein in primary non-small-cell-lung cancer and metastatic sites: implications for treatment with EGFR-inhibitors Ann Oncol 2006 17 981 985 10.1093/annonc/mdl038 16524970 

  69. 69. Rau KM Discordance of Mutation Statuses of Epidermal Growth Factor Receptor and K-ras between Primary Adenocarcinoma of Lung and Brain Metastasis Int J Mol Sci 2016 17 524 10.3390/ijms17040524 27070580 

  70. 70. Han HS EGFR mutation status in primary lung adenocarcinomas and corresponding metastatic lesions: discordance in pleural metastases Clin Lung Cancer 2011 12 380 386 10.1016/j.cllc.2011.02.006 21729655 

  71. 71. Gow CH Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer Ann Oncol 2009 20 696 702 10.1093/annonc/mdn679 19088172 

  72. 72. Matsumoto S Frequent EGFR mutations in brain metastases of lung adenocarcinoma Int J Cancer 2006 119 1491 1494 10.1002/ijc.21940 16642476 

  73. 73. Kalikaki A Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC Br J Cancer 2008 99 923 929 10.1038/sj.bjc.6604629 19238633 

  74. 74. Luo D EGFR mutation status and its impact on survival of Chinese non-small cell lung cancer patients with brain metastases Tumour Biol 2014 35 2437 2444 10.1007/s13277-013-1323-9 24197981 

  75. 75. Kim KM Discordance of Epidermal Growth Factor Receptor Mutation between Brain Metastasis and Primary Non-Small Cell Lung Cancer Brain Tumor Res Treat 2019 7 137 140 10.14791/btrt.2019.7.e44 31686445 

  76. 76. Lee CC Discordance of epidermal growth factor receptor mutation between primary lung tumor and paired distant metastases in non-small cell lung cancer: A systematic review and meta-analysis PLoS One 2019 14 e0218414 10.1371/journal.pone.0218414 31216329 

  77. 77. Wang Shuo Shi Jingyun Ye Zhaoxiang Dong Di Yu Dongdong Zhou Mu Liu Ying Gevaert Olivier Wang Kun Zhu Yongbei Zhou Hongyu Liu Zhenyu Tian Jie Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning European Respiratory Journal 2019 53 3 1800986 10.1183/13993003.00986-2018 30635290 

  78. 78. Gevaert O Predictive radiogenomics modeling of EGFR mutation status in lung cancer Sci Rep 2017 7 41674 10.1038/srep41674 28139704 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로