$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of a Tough, Self-Healing Polyampholyte Terpolymer Hydrogel Patch with Enhanced Skin Adhesion via Tuning the Density and Strength of Ion-Pair Associations

ACS applied materials & interfaces, v.13 no.7, 2021년, pp.8889 - 8900  

Lee, Jin Hyun (Department of Polymer Science and Engineering, Polymer Research Center , Inha University , Incheon 22212 , Republic of Korea) ,  Lee, Dae Sung (Department of Advanced Materials , Hannam University , Daejeon 34054 , Republic of Korea) ,  Jung, Yong Chae (Institute of Advanced Composite Materials , Korea Institute of Science and Technology (KIST) , Wanju-gun , Jeonbuk-do 55324 , Republic of Korea) ,  Oh, Jeong-Wook (Department of Chemistry , Hankuk University of Foreign Studies , Yongin 17035 , Republic of Korea) ,  Na, Yang Ho

Abstract AI-Helper 아이콘AI-Helper

Polyampholyte (PA) hydrogels have great potential for biomedical applications, owing to their high toughness and good self-recovery and self-healing (SELF) behavior in addition to their physical properties similar to human tissue. However, their implementation as practical biomedical skin patches or...

Keyword

참고문헌 (45)

  1. Kenry, Yeo, Joo Chuan, Lim, Chwee Teck. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems & nanoengineering, vol.2, 16043-.

  2. Jin, Han, Abu‐Raya, Yasmin Shibli, Haick, Hossam. Advanced Materials for Health Monitoring with Skin‐Based Wearable Devices. Advanced healthcare materials, vol.6, no.11, 1700024-.

  3. Bandodkar, Amay J., Jeerapan, Itthipon, Wang, Joseph. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS sensors, vol.1, no.5, 464-482.

  4. Agnifili, Luca, Mastropasqua, Rodolfo, Frezzotti, Paolo, Fasanella, Vincenzo, Motolese, Ilaria, Pedrotti, Emilio, Iorio, Angelo Di, Mattei, Peter A., Motolese, Eduardo, Mastropasqua, Leonardo. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta ophthalmologica, vol.93, no.1, e14-e21.

  5. Yu, Jicheng, Wang, Jinqiang, Zhang, Yuqi, Chen, Guojun, Mao, Weiwei, Ye, Yanqi, Kahkoska, Anna R., Buse, John B., Langer, Robert, Gu, Zhen. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature biomedical engineering, vol.4, no.5, 499-506.

  6. Correa-Gallegos, Donovan, Jiang, Dongsheng, Christ, Simon, Ramesh, Pushkar, Ye, Haifeng, Wannemacher, Juliane, Kalgudde Gopal, Shruthi, Yu, Qing, Aichler, Michaela, Walch, Axel, Mirastschijski, Ursula, Volz, Thomas, Rinkevich, Yuval. Patch repair of deep wounds by mobilized fascia. Nature, vol.576, no.7786, 287-292.

  7. Shin, Jisoo, Choi, Soojeong, Kim, Jung Hyun, Cho, Jung Ho, Jin, Yoonhee, Kim, Suran, Min, Sungjin, Kim, Su Kyeom, Choi, Donghoon, Cho, Seung‐Woo. Tissue Tapes—Phenolic Hyaluronic Acid Hydrogel Patches for Off‐the‐Shelf Therapy. Advanced functional materials, vol.29, no.49, 1903863-.

  8. Slaughter, Brandon V., Khurshid, Shahana S., Fisher, Omar Z., Khademhosseini, Ali, Peppas, Nicholas A.. Hydrogels in Regenerative Medicine. Advanced materials, vol.21, no.32, 3307-3329.

  9. Geckil, Hikmet, Xu, Feng, Zhang, Xiaohui, Moon, SangJun, Demirci, Utkan. Engineering Hydrogels as Extracellular Matrix Mimics. Nanomedicine, vol.5, no.3, 469-484.

  10. Haraguchi, K., Takehisa, T., Fan, S.. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay. Macromolecules, vol.35, no.27, 10162-10171.

  11. Lee, Jin Hyun, Han, Wen Jiao, Jang, Hyo Seon, Choi, Hyoung Jin. Highly Tough, Biocompatible, and Magneto-Responsive Fe3O4/Laponite/PDMAAm Nanocomposite Hydrogels. Scientific reports, vol.9, no.1, 15024-.

  12. Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.. Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced materials, vol.15, no.14, 1155-1158.

  13. Sun, Jeong-Yun, Zhao, Xuanhe, Illeperuma, Widusha R. K., Chaudhuri, Ovijit, Oh, Kyu Hwan, Mooney, David J., Vlassak, Joost J., Suo, Zhigang. Highly stretchable and tough hydrogels. Nature, vol.489, no.7414, 133-136.

  14. Sun, Tao Lin, Kurokawa, Takayuki, Kuroda, Shinya, Ihsan, Abu Bin, Akasaki, Taigo, Sato, Koshiro, Haque, Md. Anamul, Nakajima, Tasuku, Gong, Jian Ping. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials, vol.12, no.10, 932-937.

  15. Na, Y.-H., Kurokawa, T., Katsuyama, Y., Tsukeshiba, H., Gong, J. P., Osada, Y., Okabe, S., Karino, T., Shibayama, M.. Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength. Macromolecules, vol.37, no.14, 5370-5374.

  16. Na, Y.-H., Tanaka, Y., Kawauchi, Y., Furukawa, H., Sumiyoshi, T., Gong, J. P., Osada, Y.. Necking Phenomenon of Double-Network Gels. Macromolecules, vol.39, no.14, 4641-4645.

  17. Zhang, Yu Shrike, Khademhosseini, Ali. Advances in engineering hydrogels. Science, vol.356, no.6337, eaaf3627-eaaf3627.

  18. Ihsan, Abu Bin, Sun, Tao Lin, Kurokawa, Takayuki, Karobi, Sadia Nazneen, Nakajima, Tasuku, Nonoyama, Takayuki, Roy, Chanchal Kumar, Luo, Feng, Gong, Jian Ping. Self-Healing Behaviors of Tough Polyampholyte Hydrogels. Macromolecules, vol.49, no.11, 4245-4252.

  19. Sun, Tao Lin, Luo, Feng, Kurokawa, Takayuki, Karobi, Sadia Nazneen, Nakajima, Tasuku, Gong, Jian Ping. Molecular structure of self-healing polyampholyte hydrogels analyzed from tensile behaviors. Soft matter, vol.11, no.48, 9355-9366.

  20. Luo, Feng, Sun, Tao Lin, Nakajima, Tasuku, Kurokawa, Takayuki, Zhao, Yu, Sato, Koshiro, Ihsan, Abu Bin, Li, Xufeng, Guo, Honglei, Gong, Jian Ping. Oppositely Charged Polyelectrolytes Form Tough, Self‐Healing, and Rebuildable Hydrogels. Advanced materials, vol.27, no.17, 2722-2727.

  21. Eisenhaure, Jeffrey, Kim, Seok. A Review of the State of Dry Adhesives: Biomimetic Structures and the Alternative Designs They Inspire. Micromachines, vol.8, no.4, 125-.

  22. Roy, Chanchal Kumar, Guo, Hong Lei, Sun, Tao Lin, Ihsan, Abu Bin, Kurokawa, Takayuki, Takahata, Masakazu, Nonoyama, Takayuki, Nakajima, Tasuku, Gong, Jian Ping. Self‐Adjustable Adhesion of Polyampholyte Hydrogels. Advanced materials, vol.27, no.45, 7344-7348.

  23. Greiner, C., del Campo, A., Arzt, E.. Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload. Langmuir : the ACS journal of surfaces and colloids, vol.23, no.7, 3495-3502.

  24. Jeong, Hoon Eui, Lee, Jin-Kwan, Kim, Hong Nam, Moon, Sang Heup, Suh, Kahp Y.. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, vol.106, no.14, 5639-5644.

  25. Baik, Sangyul, Kim, Da Wan, Park, Youngjin, Lee, Tae-Jin, Ho Bhang, Suk, Pang, Changhyun. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature, vol.546, no.7658, 396-400.

  26. Han, Lu, Yan, Liwei, Wang, Kefeng, Fang, Liming, Zhang, Hongping, Tang, Youhong, Ding, Yonghui, Weng, Lu-Tao, Xu, Jielong, Weng, Jie, Liu, Yujie, Ren, Fuzeng, Lu, Xiong. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials, vol.9, no.4, e372-e372.

  27. Li, J., Celiz, A. D., Yang, J., Yang, Q., Wamala, I., Whyte, W., Seo, B. R., Vasilyev, N. V., Vlassak, J. J., Suo, Z., Mooney, D. J.. Tough adhesives for diverse wet surfaces. Science, vol.357, no.6349, 378-381.

  28. Qiao, Haiyan, Qi, Pengfei, Zhang, Xiaohui, Wang, Linan, Tan, Yeqiang, Luan, Zhaohui, Xia, Yanzhi, Li, Yanhui, Sui, Kunyan. Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS applied materials & interfaces, vol.11, no.8, 7755-7763.

  29. Pailler-Mattei, C., Bec, S., Zahouani, H.. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical engineering & physics, vol.30, no.5, 599-606.

  30. Drotlef, Dirk‐M., Amjadi, Morteza, Yunusa, Muhammad, Sitti, Metin. Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors. Advanced materials, vol.29, no.28, 1701353-.

  31. Pailler-Mattéi, C., Zahouani, H.. Study of adhesion forces and mechanical properties of human skin in vivo. Journal of adhesion science and technology, vol.18, no.15, 1739-1758.

  32. Principles of Polymer Chemistry Flory P. J. 1953 

  33. An Introduction to the Mechanical Properties of Solid Polymers Ward I. M. 1993 

  34. Rheology: Principles, Measurements, and Applications Macosko C. W. 1994 

  35. Chen, Y., Gao, D., Liu, H., Lin, S., Jiang, Y.. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Analytica chimica acta : an international journal devoted to all branches of analytical chemistry, vol.898, 85-92.

  36. Nisato, G., Munch, J. P., Candau, S. J.. Swelling, Structure, and Elasticity of Polyampholyte Hydrogels. Langmuir : the ACS journal of surfaces and colloids, vol.15, no.12, 4236-4244.

  37. Manning, Gerald S.. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quarterly reviews of biophysics, vol.11, no.2, 179-246.

  38. Principles of Polymerization Odian G. 2004 10.1002/047147875X 

  39. Dobrynin, Andrey V., Colby, Ralph H., Rubinstein, Michael. Polyampholytes. Journal of polymer science Part B, Polymer physics, vol.42, no.19, 3513-3538.

  40. Guo, Honglei, Kurokawa, Takayuki, Takahata, Masakazu, Hong, Wei, Katsuyama, Yoshinori, Luo, Feng, Ahmed, Jamil, Nakajima, Tasuku, Nonoyama, Takayuki, Gong, Jian Ping. Quantitative Observation of Electric Potential Distribution of Brittle Polyelectrolyte Hydrogels Using Microelectrode Technique. Macromolecules, vol.49, no.8, 3100-3108.

  41. Venkatraman, Subbu, Gale, Robert. Skin adhesives and skin adhesion : 1. Transdermal drug delivery systems. Biomaterials, vol.19, no.13, 1119-1136.

  42. Peppas, N.A., Buri, P.A.. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. Journal of controlled release : official journal of the Controlled Release Society, vol.2, 257-275.

  43. Polymer Gel Rheology and Adhesion in Rheology Grillet A. M. 2012 

  44. Levenberg, Shulamit, Rouwkema, Jeroen, Macdonald, Mara, Garfein, Evan S, Kohane, Daniel S, Darland, Diane C, Marini, Robert, van Blitterswijk, Clemens A, Mulligan, Richard C, D'Amore, Patricia A, Langer, Robert. Engineering vascularized skeletal muscle tissue. Nature biotechnology, vol.23, no.7, 879-884.

  45. Nie, Yan, Zhang, Kaiyue, Zhang, Shuaiqiang, Wang, Dan, Han, Zhibo, Che, Yongzhe, Kong, Deling, Zhao, Qiang, Han, Zhongchao, He, Zuo-Xiang, Liu, Na, Ma, Fengxia, Li, Zongjin. Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.63, 190-199.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로