$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Relaxation Dynamics of Enhanced Hot-Electron Flow on Perovskite-Coupled Plasmonic Silver Schottky Nanodiodes

The journal of physical chemistry. C, Nanomaterials and Interfaces, v.125 no.4, 2021년, pp.2575 - 2582  

Park, Yujin (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Choi, Jungkweon (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Kang, Mincheol (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Lee, Hyunhwa (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Ihee, Hyotcherl ,  Park, Jeong Young

Abstract AI-Helper 아이콘AI-Helper

Hot-electron-based photovoltaics has great potential to overcome the limitations of semiconductor-based photovoltaics. However, hot-electron applications still suffer from low quantum efficiency, associated with inefficient hot-electron collection and a poor absorption coefficient. Here, we demonstr...

참고문헌 (49)

  1. Brongersma, Mark L., Halas, Naomi J., Nordlander, Peter. Plasmon-induced hot carrier science and technology. Nature nanotechnology, vol.10, no.1, 25-34.

  2. Clavero, César. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature photonics, vol.8, no.2, 95-103.

  3. Amendola, Vincenzo, Pilot, Roberto, Frasconi, Marco, Maragò, Onofrio M, Iatì, Maria Antonia. Surface plasmon resonance in gold nanoparticles: a review. Journal of physics, an Institute of Physics journal. Condensed matter, vol.29, no.20, 203002-.

  4. Fei Guo, Chuan, Sun, Tianyi, Cao, Feng, Liu, Qian, Ren, Zhifeng. Metallic nanostructures for light trapping in energy-harvesting devices. Light, science & applications, vol.3, no.4, e161-e161.

  5. Atwater, Harry A., Polman, Albert. Plasmonics for improved photovoltaic devices. Nature materials, vol.9, no.3, 205-213.

  6. Lee, Hyunhwa, Lee, Hyunsoo, Park, Jeong Young. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO2. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.2, 891-896.

  7. Zhang, Chao, Zhao, Hangqi, Zhou, Linan, Schlather, Andrea E., Dong, Liangliang, McClain, Michael J., Swearer, Dayne F., Nordlander, Peter, Halas, Naomi J.. Al–Pd Nanodisk Heterodimers as Antenna–Reactor Photocatalysts. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.16, no.10, 6677-6682.

  8. Lee, Young Keun, Lee, Hyosun, Lee, Changhwan, Hwang, Euyheon, Park, Jeong Young. Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes. Journal of physics, an Institute of Physics journal. Condensed matter, vol.28, no.25, 254006-.

  9. Lee, Changhwan, Lee, Young Keun, Park, Yujin, Park, Jeong Young. Polarization Effect of Hot Electrons in Tandem-Structured Plasmonic Nanodiode. ACS photonics, vol.5, no.9, 3499-3506.

  10. Knight, Mark W., Sobhani, Heidar, Nordlander, Peter, Halas, Naomi J.. Photodetection with Active Optical Antennas. Science, vol.332, no.6030, 702-704.

  11. Sarkar, Swagato, Gupta, Vaibhav, Kumar, Mohit, Schubert, Jonas, Probst, Patrick T., Joseph, Joby, König, Tobias A.F.. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating. ACS applied materials & interfaces, vol.11, no.14, 13752-13760.

  12. Christopher, Phillip, Xin, Hongliang, Marimuthu, Andiappan, Linic, Suljo. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature materials, vol.11, no.12, 1044-1050.

  13. Rycenga, Matthew, Cobley, Claire M., Zeng, Jie, Li, Weiyang, Moran, Christine H., Zhang, Qiang, Qin, Dong, Xia, Younan. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical reviews, vol.111, no.6, 3669-3712.

  14. Mascaretti, Luca, Dutta, Aveek, Kment, Štěpán, Shalaev, Vladimir M., Boltasseva, Alexandra, Zbořil, Radek, Naldoni, Alberto. Plasmon‐Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Advanced materials, vol.31, no.31, 1805513-.

  15. Brown, Ana M., Sundararaman, Ravishankar, Narang, Prineha, Goddard, William A., Atwater, Harry A.. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS nano, vol.10, no.1, 957-966.

  16. Tanabe, Katsuaki. Field Enhancement around Metal Nanoparticles and Nanoshells: A Systematic Investigation. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.112, no.40, 15721-15728.

  17. Lee, Hyosun, Lee, Young Keun, Hwang, Euyheon, Park, Jeong Young. Enhanced Surface Plasmon Effect of Ag/TiO2 Nanodiodes on Internal Photoemission. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.11, 5650-5656.

  18. Lee, Changhwan, Park, Yujin, Park, Jeong Young. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO 2 nanodiode. RSC advances, vol.9, no.32, 18371-18376.

  19. McFarland, Eric W., Tang, Jing. A photovoltaic device structure based on internal electron emission. Nature, vol.421, no.6923, 616-618.

  20. Lee, Young Keun, Park, Jonghyurk, Park, Jeong Young. The Effect of Dye Molecules and Surface Plasmons in Photon-Induced Hot Electron Flows Detected on Au/TiO2 Nanodiodes. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.116, no.35, 18591-18596.

  21. Park, Yujin, Choi, Jungkweon, Lee, Changhwan, Cho, An-Na, Cho, Dae Won, Park, Nam-Gyu, Ihee, Hyotcherl, Park, Jeong Young. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.8, 5489-5495.

  22. Yang, Ye, Ostrowski, David P., France, Ryan M., Zhu, Kai, van de Lagemaat, Jao, Luther, Joseph M., Beard, Matthew C.. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature photonics, vol.10, no.1, 53-59.

  23. Li, Mingjie, Bhaumik, Saikat, Goh, Teck Wee, Kumar, Muduli Subas, Yantara, Natalia, Grätzel, Michael, Mhaisalkar, Subodh, Mathews, Nripan, Sum, Tze Chien. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nature communications, vol.8, 14350-.

  24. Ahn, Namyoung, Son, Dae-Yong, Jang, In-Hyuk, Kang, Seong Min, Choi, Mansoo, Park, Nam-Gyu. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society, vol.137, no.27, 8696-8699.

  25. Jeon, Nam Joong, Noh, Jun Hong, Kim, Young Chan, Yang, Woon Seok, Ryu, Seungchan, Seok, Sang Il. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, vol.13, no.9, 897-903.

  26. Guo, Zhi, Wan, Yan, Yang, Mengjin, Snaider, Jordan, Zhu, Kai, Huang, Libai. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science, vol.356, no.6333, 59-62.

  27. Lazzari, Rémi, Roux, Stéphane, Simonsen, Ingve, Jupille, Jacques, Bedeaux, Dick, Vlieger, Jan. Multipolar plasmon resonances in supported silver particles: The case ofAg/α−Al2O3(0001). Physical review. B, Condensed matter and materials physics, vol.65, no.23, 235424-.

  28. Gao, Xu Dong, Fei, Guang Tao, Xu, Shao Hui, Zhong, Bin Nian, Ouyang, Hao Miao, Li, Xin Hua, Zhang, Li De. Porous Ag/TiO2-Schottky-diode based plasmonic hot-electron photodetector with high detectivity and fast response. Nanophotonics, vol.8, no.7, 1247-1254.

  29. Hooshmand, Nasrin, El-Sayed, Mostafa A.. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces. Proceedings of the National Academy of Sciences of the United States of America, vol.116, no.39, 19299-19304.

  30. Sosa, I. O., Noguez, C., Barrera, R. G.. Optical Properties of Metal Nanoparticles with Arbitrary Shapes. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.107, no.26, 6269-6275.

  31. Yin, Jun, Zang, Yashu, Xu, Binbin, Li, Shuping, Kang, Junyong, Fang, Yanyan, Wu, Zhihao, Li, Jing. Multipole plasmon resonances in self-assembled metal hollow-nanospheres. Nanoscale, vol.6, no.8, 3934-3940.

  32. Noguez, C.. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.111, no.10, 3806-3819.

  33. Xu, G., Tazawa, M., Jin, P., Nakao, S.. Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Applied physics. A, Materials science & processing, vol.80, no.7, 1535-1540.

  34. Kelly, K. L., Coronado, E., Zhao, L. L., Schatz, G. C.. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.107, no.3, 668-677.

  35. Xing, Guichuan, Mathews, Nripan, Lim, Swee Sien, Yantara, Natalia, Liu, Xinfeng, Sabba, Dharani, Grätzel, Michael, Mhaisalkar, Subodh, Sum, Tze Chien. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature materials, vol.13, no.5, 476-480.

  36. Ball, James M., Stranks, Samuel D., Hörantner, Maximilian T., Hüttner, Sven, Zhang, Wei, Crossland, Edward J. W., Ramirez, Ivan, Riede, Moritz, Johnston, Michael B., Friend, Richard H., Snaith, Henry J.. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy & environmental science, vol.8, no.2, 602-609.

  37. Chen, Chang-Wen, Hsiao, Sheng-Yi, Chen, Chien-Yu, Kang, Hao-Wei, Huang, Zheng-Yu, Lin, Hao-Wu. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.17, 9152-9159.

  38. Green, Martin A., Jiang, Yajie, Soufiani, Arman Mahboubi, Ho-Baillie, Anita. Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites. The journal of physical chemistry letters, vol.6, no.23, 4774-4785.

  39. Ringe, Emilie, McMahon, Jeffrey M., Sohn, Kwonnam, Cobley, Claire, Xia, Younan, Huang, Jiaxing, Schatz, George C., Marks, Laurence D., Van Duyne, Richard P.. Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.29, 12511-12516.

  40. Sum, Tze Chien, Mathews, Nripan, Xing, Guichuan, Lim, Swee Sien, Chong, Wee Kiang, Giovanni, David, Dewi, Herlina Arianita. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. Accounts of chemical research, vol.49, no.2, 294-302.

  41. Price, Michael B., Butkus, Justinas, Jellicoe, Tom C., Sadhanala, Aditya, Briane, Anouk, Halpert, Jonathan E., Broch, Katharina, Hodgkiss, Justin M., Friend, Richard H., Deschler, Felix. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nature communications, vol.6, 8420-.

  42. Del Fatti, N., Voisin, C., Achermann, M., Tzortzakis, S., Christofilos, D., Vallée, F.. Nonequilibrium electron dynamics in noble metals. Physical review. B, Condensed matter and materials physics, vol.61, no.24, 16956-16966.

  43. Voisin, C., Del Fatti, N., Christofilos, D., Vallee, F.. Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.105, no.12, 2264-2280.

  44. Furube, A., Du, L., Hara, K., Katoh, R., Tachiya, M.. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. Journal of the American Chemical Society, vol.129, no.48, 14852-14853.

  45. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A.. Searching for better plasmonic materials. Laser & photonics reviews, vol.4, no.6, 795-808.

  46. Wu, Kaifeng, Rodríguez-Córdoba, William E., Yang, Ye, Lian, Tianquan. Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.11, 5255-5263.

  47. Wu, Kaifeng, Zhu, Haiming, Liu, Zheng, Rodríguez-Córdoba, William, Lian, Tianquan. Ultrafast Charge Separation and Long-Lived Charge Separated State in Photocatalytic CdS–Pt Nanorod Heterostructures. Journal of the American Chemical Society, vol.134, no.25, 10337-10340.

  48. Chalabi, Hamidreza, Schoen, David, Brongersma, Mark L.. Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.3, 1374-1380.

  49. Tanzid, Mehbuba, Ahmadivand, Arash, Zhang, Runmin, Cerjan, Ben, Sobhani, Ali, Yazdi, Sadegh, Nordlander, Peter, Halas, Naomi J.. Combining Plasmonic Hot Carrier Generation with Free Carrier Absorption for High-Performance Near-Infrared Silicon-Based Photodetection. ACS photonics, vol.5, no.9, 3472-3477.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로