최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS omega, v.6 no.11, 2021년, pp.7646 - 7654
Park, Joonho (Neutron Science Division , Korea Atomic Energy Research Institute (KAERI) , Daejeon 34057 , Republic of Korea) , Cho, Moses (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) , Rhee, Young Min (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) , Jung, Yousung
The geometrical characteristic and the degree of CO2 activation of the CO2-coordinated Ni(0) complexes were investigated computationally by quantum chemical means for bidentate and tridentate ligands of PP, PPMeP, and PNP, and sometimes with co-complexing Fe(II) to differently coordinate CO2. We sho...
https://www.climate.gov/ (12, 01, 2020 ).
Liu Q. ; Wu L. ; Jackstell R. ; Beller M. Using carbon dioxide as a building block in organic synthesis . Nat. Commun. 2015 , 6 , 5933 – 5933 . 10.1038/ncomms6933 . 25600683
Koppenol W. H. ; Rush J. D. Reduction potential of the carbon dioxide/carbon dioxide radical anion: a comparison with other C1 radicals . J. Phys. Chem. 1987 , 91 , 4429 – 4430 . 10.1021/j100300a045 .
Gibson D. H. The Organometallic Chemistry of Carbon Dioxide . Chem. Rev. 1996 , 96 , 2063 – 2096 . 10.1021/cr940212c . 11848822
Liu J. Catalysis by Supported Single Metal Atoms . ACS Catal. 2017 , 7 , 34 – 59 . 10.1021/acscatal.6b01534 .
Álvarez A. ; Borges M. ; Corral-Pérez J. J. ; Olcina J. G. ; Hu L. ; Cornu D. ; Huang R. ; Stoian D. ; Urakawa A. CO 2 Activation over Catalytic Surfaces . ChemPhysChem 2017 , 18 , 3135 – 3141 . 10.1002/cphc.201700782 . 28851111
Bonin J. ; Maurin A. ; Robert M. Molecular catalysis of the electrochemical and photochemical reduction of CO 2 with Fe and Co metal based complexes. Recent advances . Coord. Chem. Rev. 2017 , 334 , 184 – 198 . 10.1016/j.ccr.2016.09.005 .
Song J. ; Klein E. L. ; Neese F. ; Ye S. The Mechanism of Homogeneous CO 2 Reduction by Ni(cyclam): Product Selectivity, Concerted Proton–Electron Transfer and C–O Bond Cleavage . Inorg. Chem. 2014 , 53 , 7500 – 7507 . 10.1021/ic500829p . 24957425
Beley M. ; Collin J. P. ; Ruppert R. ; Sauvage J. P. Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process . J. Am. Chem. Soc. 1986 , 108 , 7461 – 7467 . 10.1021/ja00284a003 . 22283241
Beley M. ; Collin J.-P. ; Ruppert R. ; Sauvage J.-P. Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of CO 2 in water . J. Chem. Soc., Chem. Commun. 1984 , 0 , 1315 – 1315 . 10.1039/C39840001315 .
Craig C. A. ; Spreer L. O. ; Otvos J. W. ; Calvin M. Photochemical reduction of carbon dioxide using nickel tetraazamacrocycles . J. Phys. Chem. 1990 , 94 , 7957 – 7960 . 10.1021/j100383a038 .
Froehlich J. D. ; Kubiak C. P. Homogeneous CO 2 Reduction by Ni(cyclam) at a Glassy Carbon Electrode . Inorg. Chem. 2012 , 51 , 3932 – 3934 . 10.1021/ic3001619 . 22435533
Aresta M. ; Nobile C. F. ; Albano V. G. ; Forni E. ; Manassero M. New nickel–carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel . J. Chem. Soc., Chem. Commun. 1975 , 0 , 636 – 637 . 10.1039/C39750000636 .
Anderson J. S. ; Iluc V. M. ; Hillhouse G. L. Reactions of CO 2 and CS 2 with 1,2-Bis(di- tert -butylphosphino)ethane Complexes of Nickel(0) and Nickel(I) . Inorg. Chem. 2010 , 49 , 10203 – 10207 . 10.1021/ic101652e . 20883021
Bianchini C. ; Mealli C. ; Meli A. ; Sabat M. Metal-promoted transformation of carbon dioxide into carbon monoxide. X-ray crystal structure of the nickel-carbonate complex [O=PPh 2 CH 2 C(CH 3 )(CH 2 PPh 2 ) 2 ]Ni(O 2 CO).0.5H 2 O.C 6 H 6 . Inorg. Chem. 1984 , 23 , 2731 – 2732 . 10.1021/ic00186a002 .
Kim Y.-E. ; Kim J. ; Lee Y. Formation of a nickel carbon dioxide adduct and its transformation mediated by a Lewis acid . Chem. Commun. (Cambridge, U. K.) 2014 , 50 , 11458 – 11461 . 10.1039/C4CC04800H .
Yoo C. ; Lee Y. Formation of a tetranickel octacarbonyl cluster from the CO 2 reaction of a zero-valent nickel monocarbonyl species . Inorg. Chem. Front. 2016 , 3 , 849 – 855 . 10.1039/C6QI00011H .
Yoo C. ; Lee Y. Carbon dioxide binding at a Ni/Fe center: synthesis and characterization of Ni(η 1 -CO 2 -κC) and Ni-μ-CO 2 -κ C :κ 2 O , O ′-Fe . Chem. Sci. 2017 , 8 , 600 – 605 . 10.1039/C6SC03450K . 28616135
Yoo C. ; Oh S. ; Kim J. ; Lee Y. Transmethylation of a four-coordinate nickel(i) monocarbonyl species with methyl iodide . Chem. Sci. 2014 , 5 , 3853 – 3858 . 10.1039/C4SC01089B .
Mankad N. P. ; Rivard E. ; Harkins S. B. ; Peters J. C. Structural Snapshots of a Flexible Cu 2 P 2 Core that Accommodates the Oxidation States Cu I Cu I , Cu 1.5 Cu 1.5 , and Cu II Cu II . J. Am. Chem. Soc. 2005 , 127 , 16032 – 16033 . 10.1021/ja056071l . 16287283
Adhikari D. ; Mossin S. ; Basuli F. ; Dible B. R. ; Chipara M. ; Fan H. ; Huffman J. C. ; Meyer K. ; Mindiola D. J. A Dinuclear Ni(I) System Having a Diradical Ni 2 N 2 Diamond Core Resting State: Synthetic, Structural, Spectroscopic Elucidation, and Reductive Bond Splitting Reactions . Inorg. Chem. 2008 , 47 , 10479 – 10490 . 10.1021/ic801137p . 18855380
Ribbe M. W. Insights into the Mechanism of Carbon Monoxide Dehydrogenase at Atomic Resolution . Angew. Chem., Int. Ed. 2015 , 54 , 8337 – 8339 . 10.1002/anie.201503979 .
Can M. ; Armstrong F. A. ; Ragsdale S. W. Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase . Chem. Rev. 2014 , 114 , 4149 – 4174 . 10.1021/cr400461p . 24521136
Lao K. U. ; Herbert J. M. Accurate and Efficient Quantum Chemistry Calculations for Noncovalent Interactions in Many-Body Systems: The XSAPT Family of Methods . J. Phys. Chem. A 2015 , 119 , 235 – 252 . 10.1021/jp5098603 . 25408114
Shao Y. ; Gan Z. ; Epifanovsky E. ; Gilbert A. T. B. ; Wormit M. ; Kussmann J. ; Lange A. W. ; Behn A. ; Deng J. ; Feng X. ; Ghosh D. ; Goldey M. ; Horn P. R. ; Jacobson L. D. ; Kaliman I. ; Khaliullin R. Z. ; Kuś T. ; Landau A. ; Liu J. ; Proynov E. I. ; Rhee Y. M. ; Richard R. M. ; Rohrdanz M. A. ; Steele R. P. ; Sundstrom E. J. ; Woodcock H. L. ; Zimmerman P. M. ; Zuev D. ; Albrecht B. ; Alguire E. ; Austin B. ; Beran G. J. O. ; Bernard Y. A. ; Berquist E. ; Brandhorst K. ; Bravaya K. B. ; Brown S. T. ; Casanova D. ; Chang C.-M. ; Chen Y. ; Chien S. H. ; Closser K. D. ; Crittenden D. L. ; Diedenhofen M. ; DiStasio R. A. ; Do H. ; Dutoi A. D. ; Edgar R. G. ; Fatehi S. ; Fusti-Molnar L. ; Ghysels A. ; Golubeva-Zadorozhnaya A. ; Gomes J. ; Hanson-Heine M. W. D. ; Harbach P. H. P.
Glendening E. D. ; Badenhoop J. K. ; Reed A. E. ; Carpenter J. E. ; Bohmann J. A. ; Morales C. M. ; Weinhold F. NBO 7.0 PROGRAM CITATION ; University of Wisconsin , Madison ( 2018 ) http://nbo6.chem.wisc.edu/biblio_css.htm (12, 01, 2020).
Khaliullin R. Z. ; Cobar E. A. ; Lochan R. C. ; Bell A. T. ; Head-Gordon M. Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals . J. Phys. Chem. A 2007 , 111 , 8753 – 8765 . 10.1021/jp073685z . 17655284
Galan F. ; Fouassier M. ; Tranquille M. ; Mascetti J. ; Pápai I. CO 2 Coordination to Nickel Atoms: Matrix Isolation and Density Functional Studies . J. Phys. Chem. A 1997 , 101 , 2626 – 2633 . 10.1021/jp9701552 .
Kégl T. ; Ponec R. ; Kollár L. Theoretical Insights into the Nature of Nickel–Carbon Dioxide Interactions in Ni(PH 3 ) 2 (η 2 -CO 2 ) . J. Phys. Chem. A 2011 , 115 , 12463 – 12473 . 10.1021/jp201140h . 21449600
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.