최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기The journal of physical chemistry. C, Nanomaterials and Interfaces, v.125 no.10, 2021년, pp.5897 - 5903
Park, Hyunsoo (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) , Kwon, Ohmin (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) , Kim, Jihan
Covalent-organic frameworks (COFs) are regarded as promising candidates for many different energy/environmental applications, but these materials are more difficult to synthesize compared to other porous materials such as metal-organic frameworks (MOFs). Herein, we developed a computational screenin...
Côté, Adrien P., Benin, Annabelle I., Ockwig, Nathan W., O’Keeffe, Michael, Matzger, Adam J., Yaghi, Omar M.. Porous, Crystalline, Covalent Organic Frameworks. Science, vol.310, no.5751, 1166-1170.
El-Kaderi, Hani M., Hunt, Joseph R., Mendoza-Cortés, José L., Côté, Adrien P., Taylor, Robert E., O’Keeffe, Michael, Yaghi, Omar M.. Designed Synthesis of 3D Covalent Organic Frameworks. Science, vol.316, no.5822, 268-272.
Hunt, Joseph R., Doonan, Christian J., LeVangie, James D., Côté, Adrien P., Yaghi, Omar M.. Reticular Synthesis of Covalent Organic Borosilicate Frameworks. Journal of the American Chemical Society, vol.130, no.36, 11872-11873.
Tilford, R. W., Gemmill, W. R., zur Loye, H.-C., Lavigne, J. J.. Facile Synthesis of a Highly Crystalline, Covalently Linked Porous Boronate Network. Chemistry of materials : a publication of the American Chemical Society, vol.18, no.22, 5296-5301.
Tilford, R. William, Mugavero III, Sam J., Pellechia, Perry J., Lavigne, John J.. Tailoring Microporosity in Covalent Organic Frameworks. Advanced materials, vol.20, no.14, 2741-2746.
Yaghi, Omar M., O'Keeffe, Michael, Ockwig, Nathan W., Chae, Hee K., Eddaoudi, Mohamed, Kim, Jaheon. Reticular synthesis and the design of new materials. Nature, vol.423, no.6941, 705-714.
Mastalerz, Michael. The Next Generation of Shape-Persistant Zeolite Analogues: Covalent Organic Frameworks. Angewandte Chemie. international edition, vol.47, no.3, 445-447.
Makhseed, Saad, Samuel, Jacob. Hydrogen adsorption in microporous organic framework polymer. Chemical communications : Chem comm, vol.2008, no.36, 4342-4344.
Uribe-Romo, Fernando J., Hunt, Joseph R., Furukawa, Hiroyasu, Klöck, Cornelius, O’Keeffe, Michael, Yaghi, Omar M.. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. Journal of the American Chemical Society, vol.131, no.13, 4570-4571.
Dogru, Mirjam, Sonnauer, Andreas, Gavryushin, Andrei, Knochel, Paul, Bein, Thomas. A Covalent Organic Framework with 4 nm open pores. Chemical communications : Chem comm, vol.47, no.6, 1707-1709.
Kuhn, Pierre, Antonietti, Markus, Thomas, Arne. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie. international edition, vol.47, no.18, 3450-3453.
Furukawa, Hiroyasu, Yaghi, Omar M.. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, vol.131, no.25, 8875-8883.
Assfour, B., Seifert, G.. Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.133, no.1, 59-65.
Doonan, Christian J., Tranchemontagne, David J., Glover, T. Grant, Hunt, Joseph R., Yaghi, Omar M.. Exceptional ammonia uptake by a covalent organic framework. Nature chemistry, vol.2, no.3, 235-238.
Nagai, Atsushi, Chen, Xiong, Feng, Xiao, Ding, Xuesong, Guo, Zhaoqi, Jiang, Donglin. A Squaraine‐Linked Mesoporous Covalent Organic Framework. Angewandte Chemie. international edition, vol.52, no.13, 3770-3774.
Stegbauer, Linus, Schwinghammer, Katharina, Lotsch, Bettina V.. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chemical science, vol.5, no.7, 2789-2793.
Jiang, Xue, Wang, Peng, Zhao, Jijun. 2D covalent triazine framework: a new class of organic photocatalyst for water splitting. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.15, 7750-7758.
Wang, Peng, Jiang, Xue, Zhao, Jijun. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution. Journal of physics, an Institute of Physics journal. Condensed matter, vol.28, no.3, 034004-.
Liu, Wanting, Su, Qing, Ju, Pengyao, Guo, Bixuan, Zhou, Hui, Li, Guanghua, Wu, Qiaolin. A Hydrazone‐Based Covalent Organic Framework as an Efficient and Reusable Photocatalyst for the Cross‐Dehydrogenative Coupling Reaction of N‐Aryltetrahydroisoquinolines. ChemSusChem, vol.10, no.4, 664-669.
Wan, Shun, Guo, Jia, Kim, Jangbae, Ihee, Hyotcherl, Jiang, Donglin. A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. Angewandte Chemie. international edition, vol.47, no.46, 8826-8830.
Meng, Zheng, Stolz, Robert M., Mirica, Katherine A.. Two-Dimensional Chemiresistive Covalent Organic Framework with High Intrinsic Conductivity. Journal of the American Chemical Society, vol.141, no.30, 11929-11937.
Wang, Lingling, Zeng, Cheng, Xu, Hong, Yin, Panchao, Chen, Dongcheng, Deng, Jian, Li, Mu, Zheng, Nan, Gu, Cheng, Ma, Yuguang. A highly soluble, crystalline covalent organic framework compatible with device implementation. Chemical science, vol.10, no.4, 1023-1028.
Eddaoudi, Mohamed, Moler, David B., Li, Hailian, Chen, Banglin, Reineke, Theresa M., O'Keeffe, Michael, Yaghi, Omar M.. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of chemical research, vol.34, no.4, 319-330.
James, Stuart L.. Metal-organic frameworks. Chemical Society reviews, vol.32, no.5, 276-288.
Diercks, Christian S., Yaghi, Omar M.. The atom, the molecule, and the covalent organic framework. Science, vol.355, no.6328, eaal1585-.
Communications Chemistry Ma X. 1 1 2018 10.1038/s42004-018-0011-5
Colson, John W., Woll, Arthur R., Mukherjee, Arnab, Levendorf, Mark P., Spitler, Eric L., Shields, Virgil B., Spencer, Michael G., Park, Jiwoong, Dichtel, William R.. Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, vol.332, no.6026, 228-231.
Colson, John W., Mann, Jason A., DeBlase, Catherine R., Dichtel, William R.. Patterned growth of oriented 2D covalent organic framework thin films on single‐layer graphene. Journal of polymer science Part A, Polymer chemistry, vol.53, no.2, 378-384.
Lu, Hui, Wang, Chang, Chen, Juanjuan, Ge, Rile, Leng, Wenguang, Dong, Bin, Huang, Jun, Gao, Yanan. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chemical communications : Chem comm, vol.51, no.85, 15562-15565.
Peng, Yongwu, Zhao, Meiting, Chen, Bo, Zhang, Zhicheng, Huang, Ying, Dai, Fangna, Lai, Zhuangchai, Cui, Xiaoya, Tan, Chaoliang, Zhang, Hua. Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials. Advanced materials, vol.30, no.3, 1705454-.
Sun, Dengrong, Jang, Seungwook, Yim, Se‐Jun, Ye, Lin, Kim, Dong‐Pyo. Metal Doped Core–Shell Metal‐Organic Frameworks@Covalent Organic Frameworks (MOFs@COFs) Hybrids as a Novel Photocatalytic Platform. Advanced functional materials, vol.28, no.13, 1707110-.
Zhang, Feng‐Ming, Sheng, Jing‐Li, Yang, Zhao‐Di, Sun, Xiao‐Jun, Tang, Hong‐Liang, Lu, Meng, Dong, Hong, Shen, Feng‐Cui, Liu, Jiang, Lan, Ya‐Qian. Rational Design of MOF/COF Hybrid Materials for Photocatalytic H2 Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie. international edition, vol.57, no.37, 12106-12110.
GaoThese authors contributed equally to this work., Ming-Liang, Qi, Mei-Hong, Liu, Lin, Han, Zheng-Bo. An exceptionally stable core-shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization-Knoevenagel condensation reaction. Chemical communications : Chem comm, vol.55, no.45, 6377-6380.
Li, Fei, Wang, Dengke, Xing, Qiu-Ju, Zhou, Gang, Liu, Shan-Shan, Li, Yan, Zheng, Ling-Ling, Ye, Peng, Zou, Jian-Ping. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Applied catalysis. B, Environmental, vol.243, 621-628.
Zhao, Jun, Jin, Bo, Peng, Rufang. New Core-Shell Hybrid Material IR-MOF3@COF-LZU1 for Highly Efficient Visible-Light Photocatalyst Degrading Nitroaromatic Explosives. Langmuir : the ACS journal of surfaces and colloids, vol.36, no.20, 5665-5670.
Zhang, Lu, Liu, Zhengwei, Deng, Qingqing, Sang, Yanjuan, Dong, Kai, Ren, Jinsong, Qu, Xiaogang. Nature‐Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia‐Like Surface for Enhanced Bacterial Inhibition. Angewandte Chemie. international edition, vol.60, no.7, 3469-3474.
Peng, Haijun, Raya, Jésus, Richard, Fanny, Baaziz, Walid, Ersen, Ovidiu, Ciesielski, Artur, Samorì, Paolo. Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza‐Diels–Alder Reaction: Towards High‐Performance Supercapacitor Materials. Angewandte Chemie. international edition, vol.59, no.44, 19602-19609.
J. Energy Chem. Lu G. 8 43 2020 10.1016/j.jechem.2019.07.014
Wang, Xin-Yao, Yin, Hua-Qing, Yin, Xue-Bo. MOF@COFs with Strong Multiemission for Differentiation and Ratiometric Fluorescence Detection. ACS applied materials & interfaces, vol.12, no.18, 20973-20981.
Chen, Yao, Yang, Dong, Shi, Benbing, Dai, Wei, Ren, Hanjie, An, Ke, Zhou, Zhiyuan, Zhao, Zhanfeng, Wang, Wenjing, Jiang, Zhongyi. In situ construction of hydrazone-linked COF-based core-shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. Journal of materials chemistry. A, Materials for energy and sustainability, vol.8, no.16, 7724-7732.
Nat. Commun. Kwon O. 1 10 2019 10.1038/s41467-018-07882-8
Zhao, Meiting, Chen, Junze, Chen, Bo, Zhang, Xiao, Shi, Zhenyu, Liu, Zhengqing, Ma, Qinglang, Peng, Yongwu, Tan, Chaoliang, Wu, Xue-Jun, Zhang, Hua. Selective Epitaxial Growth of Oriented Hierarchical Metal-Organic Framework Heterostructures. Journal of the American Chemical Society, vol.142, no.19, 8953-8961.
Ding, San-Yuan, Wang, Wei. Covalent organic frameworks (COFs): from design to applications. Chemical Society reviews, vol.42, no.2, 548-568.
Lin, Yichao, Kong, Chunlong, Chen, Liang. Amine-functionalized metal-organic frameworks: structure, synthesis and applications. RSC advances, vol.6, no.39, 32598-32614.
Groom, Colin R., Bruno, Ian J., Lightfoot, Matthew P., Ward, Suzanna C.. The Cambridge Structural Database. Acta crystallographica. Section B, Structural science, crystal engineering and materials, vol.72, no.2, 171-179.
Bernt, Stephan, Guillerm, Vincent, Serre, Christian, Stock, Norbert. Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chemical communications : Chem comm, vol.47, no.10, 2838-2840.
Tong, Minman, Lan, Youshi, Yang, Qingyuan, Zhong, Chongli. Exploring the structure-property relationships of covalent organic frameworks for noble gas separations. Chemical engineering science, vol.168, 456-464.
Ma, Tianqiong, Kapustin, Eugene A., Yin, Shawn X., Liang, Lin, Zhou, Zhengyang, Niu, Jing, Li, Li-Hua, Wang, Yingying, Su, Jie, Li, Jian, Wang, Xiaoge, Wang, Wei David, Wang, Wei, Sun, Junliang, Yaghi, Omar M.. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science, vol.361, no.6397, 48-52.
Mahan, John E., Geib, Kent M., Robinson, G. Y., Long, Robert G., Xinghua, Yan, Bai, Gang, Nicolet, Marc-A., Nathan, Menachem. Epitaxial films of semiconducting FeSi2 on (001) silicon. Applied physics letters, vol.56, no.21, 2126-2128.
Lin, Wen-Tai, Meng, Ling-Cheng, Chen, Guo-Ju, Liu, Hok-Shin. Epitaxial growth of cubic AlN films on (100) and (111) silicon by pulsed laser ablation. Applied physics letters, vol.66, no.16, 2066-2068.
KwonThese authors contributed equally to this work., Ohmin, Park, Sanghoon, Zhou, Hong-Cai, Kim, Jihan. Computational prediction of hetero-interpenetration in metal-organic frameworks. Chemical communications : Chem comm, vol.53, no.12, 1953-1956.
Zur, A., McGill, T. C.. Lattice match: An application to heteroepitaxy. Journal of applied physics, vol.55, no.2, 378-386.
Tarzia, Andrew, Takahashi, Masahide, Falcaro, Paolo, Thornton, Aaron W., Doonan, Christian J., Huang, David M.. High-Throughput Screening of Metal-Organic Frameworks for Macroscale Heteroepitaxial Alignment. ACS applied materials & interfaces, vol.10, no.47, 40938-40950.
Bristow, Jessica K., Butler, Keith T., Svane, Katrine L., Gale, Julian D., Walsh, Aron. Chemical bonding at the metal-organic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO2. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.13, 6226-6232.
Butler, Keith T., Hendon, Christopher H., Walsh, Aron. Designing porous electronic thin-film devices: band offsets and heteroepitaxy. Faraday discussions, vol.201, 207-219.
Morris, William, Taylor, R.E., Dybowski, C., Yaghi, Omar M., Garcia-Garibay, Miguel A.. Framework mobility in the metal–organic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. Journal of molecular structure, vol.1004, no.1, 94-101.
J. Chem. Phys Frisch M. 5648 98 1993 10.1063/1.464455
Stephens, P. J., Devlin, F. J., Chabalowski, C. F., Frisch, M. J.. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of physical chemistry, vol.98, no.45, 11623-11627.
Material Studio 6.0 Module F. 2011
Jiang, Hai-Long, Tatsu, Yoshiro, Lu, Zhang-Hui, Xu, Qiang. Non-, Micro-, and Mesoporous Metal−Organic Framework Isomers: Reversible Transformation, Fluorescence Sensing, and Large Molecule Separation. Journal of the American Chemical Society, vol.132, no.16, 5586-5587.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.