최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature, v.591 no.7850 = no.7850, 2021년, pp.482 - 487
Quijano-Rubio, Alfredo , Yeh, Hsien-Wei , Park, Jooyoung , Lee, Hansol , Langan, Robert A. , Boyken, Scott E. , Lajoie, Marc J. , Cao, Longxing , Chow, Cameron M. , Miranda, Marcos C. , Wi, Jimin , Hong, Hyo Jeong , Stewart, Lance , Oh, Byung-Ha , Baker, David
초록이 없습니다.
Trends Biotechnol. V Stein 33 101 2015 10.1016/j.tibtech.2014.11.010 Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101-110 (2015).
Nature RA Langan 572 205 2019 10.1038/s41586-019-1432-8 Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205-210 (2019).
ACS Nano B Udugama 14 3822 2020 10.1021/acsnano.0c02624 Udugama, B. et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14, 3822-3835 (2020).
Science L Cao 370 426 2020 10.1126/science.abd9909 Cao, L. et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370, 426-431 (2020).
Annu. Rev. Anal. Chem. (Palo Alto Calif.) H-W Yeh 12 129 2019 10.1146/annurev-anchem-061318-115027 Yeh, H.-W. & Ai, H.-W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 12, 129-150 (2019).
Chem. Rev. EC Greenwald 118 11707 2018 10.1021/acs.chemrev.8b00333 Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707-11794 (2018).
ACS Chem. Biol. S Banala 8 2127 2013 10.1021/cb400406x Banala, S., Aper, S. J. A., Schalk, W. & Merkx, M. Switchable reporter enzymes based on mutually exclusive domain interactions allow antibody detection directly in solution. ACS Chem. Biol. 8, 2127-2132 (2013).
Anal. Chem. R Arts 88 4525 2016 10.1021/acs.analchem.6b00534 Arts, R. et al. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Anal. Chem. 88, 4525-4532 (2016).
Anal. Chem. M van Rosmalen 90 3592 2018 10.1021/acs.analchem.8b00041 van Rosmalen, M. et al. Dual-color bioluminescent sensor proteins for therapeutic drug monitoring of antitumor antibodies. Anal. Chem. 90, 3592-3599 (2018).
Science Q Yu 361 1122 2018 10.1126/science.aat7992 Yu, Q. et al. Semisynthetic sensor proteins enable metabolic assays at the point of care. Science 361, 1122-1126 (2018).
Nat. Metab. Q Yu 1 1219 2019 10.1038/s42255-019-0151-7 Yu, Q. et al. A biosensor for measuring NAD+ levels at the point of care. Nat. Metab. 1, 1219-1225 (2019).
Nat. Commun. A Schena 6 2015 10.1038/ncomms8830 Schena, A., Griss, R. & Johnsson, K. Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nat. Commun. 6, 7830 (2015).
ACS Sens. R Arts 2 1730 2017 10.1021/acssensors.7b00695 Arts, R. et al. Semisynthetic bioluminescent sensor proteins for direct detection of antibodies and small molecules in solution. ACS Sens. 2, 1730-1736 (2017).
J. Am. Chem. Soc. L Xue 138 5258 2016 10.1021/jacs.6b03034 Xue, L., Prifti, E. & Johnsson, K. A general strategy for the semisynthesis of ratiometric fluorescent sensor proteins with increased dynamic range. J. Am. Chem. Soc. 138, 5258-5261 (2016).
J. Am. Chem. Soc. Z Guo 141 8128 2019 10.1021/jacs.8b12298 Guo, Z. et al. Generalizable protein biosensors based on synthetic switch modules. J. Am. Chem. Soc. 141, 8128-8135 (2019).
ACS Synth. Biol. S Edwardraja 9 1306 2020 10.1021/acssynbio.9b00500 Edwardraja, S. et al. Caged activators of artificial allosteric protein biosensors. ACS Synth. Biol. 9, 1306-1314 (2020).
Methods Mol. Biol. LF Ribeiro 1596 43 2017 10.1007/978-1-4939-6940-1_3 Ribeiro, L. F., Warren, T. D. & Ostermeier, M. Construction of protein switches by domain insertion and directed evolution. Methods Mol. Biol. 1596, 43-55 (2017).
ACS Chem. Biol. AS Dixon 11 400 2016 10.1021/acschembio.5b00753 Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400-408 (2016).
Nature DL Minor Jr 380 730 1996 10.1038/380730a0 Minor, D. L., Jr & Kim, P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730-734 (1996).
Cell Death Differ. J Kale 25 65 2018 10.1038/cdd.2017.186 Kale, J., Osterlund, E. J. & Andrews, D. W. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25, 65-80 (2018).
Nature A Chevalier 550 74 2017 10.1038/nature23912 Chevalier, A. et al. Massively parallel de novo protein design for targeted therapeutics. Nature 550, 74-79 (2017).
Science MJ Lajoie 369 1637 2020 10.1126/science.aba6527 Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637-1643 (2020).
Proc. Natl Acad. Sci. USA LN Deis 112 9028 2015 10.1073/pnas.1424724112 Deis, L. N. et al. Suppression of conformational heterogeneity at a protein-protein interface. Proc. Natl Acad. Sci. USA 112, 9028-9033 (2015).
Proc. Natl Acad. Sci. USA C Eigenbrot 107 15039 2010 10.1073/pnas.1005025107 Eigenbrot, C., Ultsch, M., Dubnovitsky, A., Abrahmsen, L. & Hard, T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Natl Acad. Sci. USA 107, 15039-15044 (2010).
Toxins (Basel) RJ Hobbs 11 418 2019 10.3390/toxins11070418 Hobbs, R. J., Thomas, C. A., Halliwell, J. & Gwenin, C. D. Rapid detection of Botulinum neurotoxins-a review. Toxins (Basel) 11, 418 (2019).
Lab. Invest. A Perrier 98 696 2018 10.1038/s41374-018-0033-8 Perrier, A., Gligorov, J., Lefevre, G. & Boissan, M. The extracellular domain of Her2 in serum as a biomarker of breast cancer. Lab. Invest. 98, 696-707 (2018).
Am. J. Med. M Rubini Gimenez 128 861 2015 10.1016/j.amjmed.2015.01.046 Rubini Gimenez, M. et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am. J. Med. 128, 861-870.e4 (2015).
Trop. Med. Infect. Dis. MH Collins 4 68 2019 10.3390/tropicalmed4020068 Collins, M. H. Serologic tools and strategies to support intervention trials to combat Zika virus infection and disease. Trop. Med. Infect. Dis. 4, 68 (2019).
Arch. Virol. RAA Ponde 164 2645 2019 10.1007/s00705-019-04369-9 Ponde, R. A. A. Expression and detection of anti-HBs antibodies after hepatitis B virus infection or vaccination in the context of protective immunity. Arch. Virol. 164, 2645-2658 (2019).
Proc. Natl Acad. Sci. USA S-W Chi 104 9230 2007 10.1073/pnas.0701279104 Chi, S.-W. et al. Broadly neutralizing anti-hepatitis B virus antibody reveals a complementarity determining region H3 lid-opening mechanism. Proc. Natl Acad. Sci. USA 104, 9230-9235 (2007).
FEBS Lett. JH Kim 589 193 2015 10.1016/j.febslet.2014.11.046 Kim, J. H. et al. Enhanced humanization and affinity maturation of neutralizing anti-hepatitis B virus preS1 antibody based on antigen-antibody complex structure. FEBS Lett. 589, 193-200 (2015).
Clin. Transl. Sci. M Ovacik 11 540 2018 10.1111/cts.12567 Ovacik, M. & Lin, K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin. Transl. Sci. 11, 540-552 (2018).
Hepatology S Locarnini 56 411 2012 10.1002/hep.25732 Locarnini, S. & Bowden, S. Hepatitis B surface antigen quantification: not what it seems on the surface. Hepatology 56, 411-414 (2012).
J. Clin. Pathol. SCS Chow 59 468 2006 10.1136/jcp.2005.029868 Chow, S. C. S. et al. Specific epitopes of the structural and hypothetical proteins elicit variable humoral responses in SARS patients. J. Clin. Pathol. 59, 468-476 (2006).
J. Clin. Microbiol. Y He 43 3718 2005 10.1128/JCM.43.8.3718-3726.2005 He, Y., Zhou, Y., Siddiqui, P., Niu, J. & Jiang, S. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J. Clin. Microbiol. 43, 3718-3726 (2005).
ACS Cent. Sci. H Wang 6 2238 2020 10.1021/acscentsci.0c00742 Wang, H. et al. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution. ACS Cent. Sci. 6, 2238-2249 (2020).
Science C-L Hsieh 369 1501 2020 10.1126/science.abd0826 Hsieh, C.-L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501-1505 (2020).
PLoS ONE N Panpradist 9 2014 10.1371/journal.pone.0105786 Panpradist, N. et al. Swab sample transfer for point-of-care diagnostics: characterization of swab types and manual agitation methods. PLoS ONE 9, e105786 (2014).
Nat. Methods H-W Yeh 14 971 2017 10.1038/nmeth.4400 Yeh, H.-W. et al. Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat. Methods 14, 971-974 (2017).
Protein Sci. D Baker 28 678 2019 10.1002/pro.3588 Baker, D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci. 28, 678-683 (2019).
10.1038/s41589-020-00699-x Yang, C. et al. Bottom-up de novo design of functional proteins with complex structural features. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-00699-x (2021).
PLoS ONE SJ Fleishman 6 2011 10.1371/journal.pone.0020161 Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).
PLoS ONE P-S Huang 6 2011 10.1371/journal.pone.0024109 Huang, P.-S. et al. RosettaRemodel: a generalized framework for flexible backbone protein design. PLoS ONE 6, e24109 (2011).
Proc. Natl Acad. Sci. USA F Khatib 108 18949 2011 10.1073/pnas.1115898108 Khatib, F. et al. Algorithm discovery by protein folding game players. Proc. Natl Acad. Sci. USA 108, 18949-18953 (2011).
Cell AC Walls 183 1367 2020 10.1016/j.cell.2020.10.043 Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367-382.e17 (2020).
eLife S Berger 5 2016 10.7554/eLife.20352 Berger, S. et al. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife 5, e20352 (2016).
Nature R Jin 444 1092 2006 10.1038/nature05387 Jin, R., Rummel, A., Binz, T. & Brunger, A. T. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444, 1092-1095 (2006).
Nat. Chem. Biol. A Shen 5 469 2009 10.1038/nchembio.178 Shen, A. et al. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol. 5, 469-478 (2009).
Acta Crystallogr. D D Liebschner 75 861 2019 10.1107/S2059798319011471 Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861-877 (2019).
Acta Crystallogr. D L Potterton 60 2288 2004 10.1107/S0907444904023716 Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D 60, 2288-2294 (2004).
ACS Chem. Biol. H-W Yeh 14 959 2019 10.1021/acschembio.9b00150 Yeh, H.-W. et al. ATP-independent bioluminescent reporter variants to improve in vivo imaging. ACS Chem. Biol. 14, 959-965 (2019).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.