최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Frontiers in neuroscience, v.14, 2020년, pp.630 -
Kim, Byung-Hoon , Ye, Jong Chul
Graph neural networks (GNN) rely on graph operations that include neural network training for various graph related tasks. Recently, several attempts have been made to apply the GNNs to functional magnetic resonance image (fMRI) data. Despite recent progresses, a common limitation is its difficulty ...
Allen E. A. Erhardt E. B. Damaraju E. Gruner W. Segall J. M. Silva R. F. . ( 2011 ). A baseline for the multivariate comparison of resting-state networks . Front. Syst. Neurosci . 5 : 2 . 10.3389/fnsys.2011.00002 21442040
Arslan S. Ktena S. I. Glocker B. Rueckert D. ( 2018 ). Graph saliency maps through spectral convolutional networks: application to sex classification with brain connectivity , in Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities ( Granada : Springer ), 3 ? 13 . 10.1007/978-3-030-00689-1_1
Bassett D. S. Bullmore E. T. ( 2009 ). Human brain networks in health and disease . Curr. Opin. Neurol . 22 : 340 . 10.1097/WCO.0b013e32832d93dd 19494774
Bassett D. S. Sporns O. ( 2017 ). Network neuroscience . Nat. Neurosci . 20 : 353 . 10.1038/nn.4502 28230844
Biswal B. B. Mennes M. Zuo X.-N. Gohel S. Kelly C. Smith S. M. . ( 2010 ). Toward discovery science of human brain function . Proc. Natl. Acad. Sci. U.S.A . 107 , 4734 ? 4739 . 10.1073/pnas.0911855107 20176931
Bluhm R. L. Osuch E. A. Lanius R. A. Boksman K. Neufeld R. W. Theberge J. . ( 2008 ). Default mode network connectivity: effects of age, sex, and analytic approach . Neuroreport 19 , 887 ? 891 . 10.1097/WNR.0b013e328300ebbf 18463507
Bruna J. Zaremba W. Szlam A. LeCun Y. ( 2013 ). Spectral networks and locally connected networks on graphs . arXiv preprint arXiv:1312.6203 .
Duffy B. A. Liu M. Flynn T. Toga A. Barkovich A. J. Xu D. ( 2019 ). Regression activation mapping on the cortical surface using graph convolutional networks , in International Conference on Medical Imaging with Deep Learning-Extended Abstract Track ( London ).
Gilmer J. Schoenholz S. S. Riley P. F. Vinyals O. Dahl G. E. ( 2017 ). Neural message passing for quantum chemistry , in Proceedings of the 34th International Conference on Machine Learning ( Sydney ), Vol. 70 , 1263 ? 1272 .
Glasser M. F. Sotiropoulos S. N. Wilson J. A. Coalson T. S. Fischl B. Andersson J. L. . ( 2013 ). The minimal preprocessing pipelines for the human connectome project . Neuroimage 80 , 105 ? 124 . 10.1016/j.neuroimage.2013.04.127 23668970
Griffanti L. Salimi-Khorshidi G. Beckmann C. F. Auerbach E. J. Douaud G. Sexton C. E. . ( 2014 ). ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging . Neuroimage 95 , 232 ? 247 . 10.1016/j.neuroimage.2014.03.034 24657355
Hammond D. K. Vandergheynst P. Gribonval R. ( 2011 ). Wavelets on graphs via spectral graph theory . Appl. Comput. Harmon. Anal . 30 , 129 ? 150 . 10.1016/j.acha.2010.04.005
He T. Kong R. Holmes A. J. Nguyen M. Sabuncu M. R. Eickhoff S. B. . ( 2019 ). Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics . Neuroimage 206 : 116276 . 10.1016/j.neuroimage.2019.116276 31610298
He Y. Evans A. ( 2010 ). Graph theoretical modeling of brain connectivity . Curr. Opin. Neurol . 23 , 341 ? 350 . 10.1097/WCO.0b013e32833aa567 20581686
Hjelmervik H. Hausmann M. Osnes B. Westerhausen R. Specht K. ( 2014 ). Resting states are resting traits-an fMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks . PLoS ONE 9 : e103492 . 10.1371/journal.pone.0103492 25057823
Huang W. Bolton T. A. Medaglia J. D. Bassett D. S. Ribeiro A. Van De Ville D. ( 2018 ). A graph signal processing perspective on functional brain imaging . Proc. IEEE 106 , 868 ? 885 . 10.1109/JPROC.2018.2798928
Jenkinson M. Beckmann C. F. Behrens T. E. Woolrich M. W. Smith S. M. ( 2012 ). FSL . Neuroimage 62 , 782 ? 790 . 10.1016/j.neuroimage.2011.09.015 21979382
Kashyap R. Kong R. Bhattacharjee S. Li J. Zhou J. Yeo B. T. ( 2019 ). Individual-specific fmri-subspaces improve functional connectivity prediction of behavior . Neuroimage 189 , 804 ? 812 . 10.1016/j.neuroimage.2019.01.069 30711467
Kim B.-H. Ye J. C. ( 2020 ). Understanding graph isomorphism network for brain mr functional connectivity analysis . arXiv preprint arXiv:2001.03690 .
Kipf T. N. Welling M. ( 2016 ). Semi-supervised classification with graph convolutional networks . arXiv preprint arXiv:1609.02907 .
Ktena S. I. Parisot S. Ferrante E. Rajchl M. Lee M. Glocker B. ( 2017 ). Distance metric learning using graph convolutional networks: application to functional brain networks , in International Conference on Medical Image Computing and Computer-Assisted Intervention ( Quebec City, QC : Springer ), 469 ? 477 . 10.1007/978-3-319-66182-7_54
Ktena S. I. Parisot S. Ferrante E. Rajchl M. Lee M. Glocker B. . ( 2018 ). Metric learning with spectral graph convolutions on brain connectivity networks . Neuroimage 169 , 431 ? 442 . 10.1016/j.neuroimage.2017.12.052 29278772
Ma G. Ahmed N. K. Willke T. Sengupta D. Cole M. W. Turk-Browne N. ( 2018 ). Similarity learning with higher-order proximity for brain network analysis . arXiv preprint arXiv:1811.02662 .
Maaten L. V. D. Hinton G. ( 2008 ). Visualizing data using t-SNE . J. Mach. Learn. Res . 9 , 2579 ? 2605 .
Mak L. E. Minuzzi L. MacQueen G. Hall G. Kennedy S. H. Milev R. ( 2017 ). The default mode network in healthy individuals: a systematic review and meta-analysis . Brain Connect . 7 , 25 ? 33 . 10.1089/brain.2016.0438 27917679
Micheloyannis S. Pachou E. Stam C. J. Breakspear M. Bitsios P. Vourkas M. . ( 2006 ). Small-world networks and disturbed functional connectivity in schizophrenia . Schizophrenia Res . 87 , 60 ? 66 . 10.1016/j.schres.2006.06.028 16875801
Ortega A. Frossard P. Kovaevi J. Moura J. M. Vandergheynst P. ( 2018 ). Graph signal processing: overview, challenges, and applications . Proc. IEEE 106 , 808 ? 828 . 10.1109/JPROC.2018.2820126
Parisot S. Ktena S. I. Ferrante E. Lee M. Guerrero R. Glocker B. . ( 2018 ). Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease . Med. Image Anal . 48 , 117 ? 130 . 10.1016/j.media.2018.06.001 29890408
Parisot S. Ktena S. I. Ferrante E. Lee M. Moreno R. G. Glocker B. ( 2017 ). Spectral graph convolutions for population-based disease prediction , in International Conference on Medical Image Computing and Computer-Assisted Intervention ( Quebec City, QC : Springer ), 177 ? 185 . 10.1007/978-3-319-66179-7_21
Rousseeuw P. J. ( 1987 ). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis . J. Comput. Appl. Math . 20 , 53 ? 65 . 10.1016/0377-0427(87)90125-7
Salimi-Khorshidi G. Douaud G. Beckmann C. F. Glasser M. F. Griffanti L. Smith S. M. ( 2014 ). Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers . Neuroimage 90 , 449 ? 468 . 10.1016/j.neuroimage.2013.11.046 24389422
Schaefer A. Kong R. Gordon E. M. Laumann T. O. Zuo X.-N. Holmes A. J. . ( 2017 ). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI . Cereb. Cortex 28 , 3095 ? 3114 . 10.1093/cercor/bhx179 28981612
Shervashidze N. Schweitzer P. Leeuwen E. J. V. Mehlhorn K. Borgwardt K. M. ( 2011 ). Weisfeiler-Lehman graph kernels . J. Mach. Learn. Res . 12 , 2539 ? 2561 .
Shuman D. I. Narang S. K. Frossard P. Ortega A. Vandergheynst P. ( 2013 ). The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains . IEEE Signal Process. Mag . 30 , 83 ? 98 . 10.1109/MSP.2012.2235192
Sporns O. ( 2018 ). Graph theory methods: applications in brain networks . Dialog. Clin. Neurosci . 20 : 111 . 30250388
Thomas Yeo B. Krienen F. M. Sepulcre J. Sabuncu M. R. Lashkari D. Hollinshead M. . ( 2011 ). The organization of the human cerebral cortex estimated by intrinsic functional connectivity . J. Neurophysiol . 106 , 1125 ? 1165 . 10.1152/jn.00338.2011 21653723
Tian L. Wang J. Yan C. He Y. ( 2011 ). Hemisphere-and gender-related differences in small-world brain networks: a resting-state functional MRI study . Neuroimage 54 , 191 ? 202 . 10.1016/j.neuroimage.2010.07.066 20688177
Van Essen D. C. Smith S. M. Barch D. M. Behrens T. E. Yacoub E. Ugurbil K. . ( 2013 ). The Wu-Minn human connectome project: an overview . Neuroimage 80 , 62 ? 79 . 10.1016/j.neuroimage.2013.05.041 23684880
Varoquaux G. Raamana P. R. Engemann D. A. Hoyos-Idrobo A. Schwartz Y. Thirion B. ( 2017 ). Assessing and tuning brain decoders: cross-validation, caveats, and guidelines . Neuroimage 145 , 166 ? 179 . 10.1016/j.neuroimage.2016.10.038 27989847
Velikovi P. Fedus W. Hamilton W. L. Lio P. Bengio Y. Hjelm R. D. ( 2018 ). Deep graph infomax . arXiv preprint arXiv:1809.10341 .
Wang J. Wang X. Xia M. Liao X. Evans A. He Y. ( 2015 ). Gretna: a graph theoretical network analysis toolbox for imaging connectomics . Front. Hum. Neurosci . 9 : 386 . 10.3389/fnhum.2015.00458 26175682
Wang J. Zuo X. He Y. ( 2010 ). Graph-based network analysis of resting-state functional MRI . Front. Syst. Neurosci . 4 : 16 . 10.3389/fnsys.2010.00016 20589099
Weis S. Patil K. R. Hoffstaedter F. Nostro A. Yeo B. T. T. Eickhoff S. B. ( 2019 ). Sex classification by resting state brain connectivity . Cereb. Cortex 30 , 824 ? 835 . 10.1093/cercor/bhz129 31251328
Weisfeiler B. Lehman A. A. ( 1968 ). A reduction of a graph to a canonical form and an algebra arising during this reduction . Nauchno Technicheskaya Informatsia 2 , 12 ? 16 .
Wu Z. Pan S. Chen F. Long G. Zhang C. Yu P. S. ( 2019 ). A comprehensive survey on graph neural networks . arXiv preprint arXiv:1901.00596 . 10.1109/TNNLS.2020.2978386 32217482
Xu C. Li C. Wu H. Wu Y. Hu S. Zhu Y. . ( 2015 ). Gender differences in cerebral regional homogeneity of adult healthy volunteers: a resting-state fMRI study . BioMed Res. Int . 2015. 10.1155/2015/183074 25629038
Xu K. Hu W. Leskovec J. Jegelka S. ( 2018a ). How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 . 31899441
Xu K. Li C. Tian Y. Sonobe T. Kawarabayashi K.-I. Jegelka S. ( 2018b ). Representation learning on graphs with jumping knowledge networks . arXiv preprint arXiv:1806.03536 .
Ye J. C. Sung W. K. ( 2019 ). Understanding geometry of encoder-decoder CNNs , in International Conference on Machine Learning ( Long Beach, CA ), 7064 ? 7073 .
Zhang C. Dougherty C. C. Baum S. A. White T. Michael A. M. ( 2018 ). Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity . Hum. Brain Mapp . 39 , 1765 ? 1776 . 10.1002/hbm.23950 29322586
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.