$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis 원문보기

Frontiers in neuroscience, v.14, 2020년, pp.630 -   

Kim, Byung-Hoon ,  Ye, Jong Chul

Abstract AI-Helper 아이콘AI-Helper

Graph neural networks (GNN) rely on graph operations that include neural network training for various graph related tasks. Recently, several attempts have been made to apply the GNNs to functional magnetic resonance image (fMRI) data. Despite recent progresses, a common limitation is its difficulty ...

Keyword

참고문헌 (54)

  1. Allen E. A. Erhardt E. B. Damaraju E. Gruner W. Segall J. M. Silva R. F. . ( 2011 ). A baseline for the multivariate comparison of resting-state networks . Front. Syst. Neurosci . 5 : 2 . 10.3389/fnsys.2011.00002 21442040 

  2. Arslan S. Ktena S. I. Glocker B. Rueckert D. ( 2018 ). Graph saliency maps through spectral convolutional networks: application to sex classification with brain connectivity , in Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities ( Granada : Springer ), 3 ? 13 . 10.1007/978-3-030-00689-1_1 

  3. Bassett D. S. Bullmore E. T. ( 2009 ). Human brain networks in health and disease . Curr. Opin. Neurol . 22 : 340 . 10.1097/WCO.0b013e32832d93dd 19494774 

  4. Bassett D. S. Sporns O. ( 2017 ). Network neuroscience . Nat. Neurosci . 20 : 353 . 10.1038/nn.4502 28230844 

  5. Biswal B. B. Mennes M. Zuo X.-N. Gohel S. Kelly C. Smith S. M. . ( 2010 ). Toward discovery science of human brain function . Proc. Natl. Acad. Sci. U.S.A . 107 , 4734 ? 4739 . 10.1073/pnas.0911855107 20176931 

  6. Bluhm R. L. Osuch E. A. Lanius R. A. Boksman K. Neufeld R. W. Theberge J. . ( 2008 ). Default mode network connectivity: effects of age, sex, and analytic approach . Neuroreport 19 , 887 ? 891 . 10.1097/WNR.0b013e328300ebbf 18463507 

  7. Bruna J. Zaremba W. Szlam A. LeCun Y. ( 2013 ). Spectral networks and locally connected networks on graphs . arXiv preprint arXiv:1312.6203 . 

  8. Duffy B. A. Liu M. Flynn T. Toga A. Barkovich A. J. Xu D. ( 2019 ). Regression activation mapping on the cortical surface using graph convolutional networks , in International Conference on Medical Imaging with Deep Learning-Extended Abstract Track ( London ). 

  9. Gilmer J. Schoenholz S. S. Riley P. F. Vinyals O. Dahl G. E. ( 2017 ). Neural message passing for quantum chemistry , in Proceedings of the 34th International Conference on Machine Learning ( Sydney ), Vol. 70 , 1263 ? 1272 . 

  10. Glasser M. F. Sotiropoulos S. N. Wilson J. A. Coalson T. S. Fischl B. Andersson J. L. . ( 2013 ). The minimal preprocessing pipelines for the human connectome project . Neuroimage 80 , 105 ? 124 . 10.1016/j.neuroimage.2013.04.127 23668970 

  11. Griffanti L. Salimi-Khorshidi G. Beckmann C. F. Auerbach E. J. Douaud G. Sexton C. E. . ( 2014 ). ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging . Neuroimage 95 , 232 ? 247 . 10.1016/j.neuroimage.2014.03.034 24657355 

  12. Hammond D. K. Vandergheynst P. Gribonval R. ( 2011 ). Wavelets on graphs via spectral graph theory . Appl. Comput. Harmon. Anal . 30 , 129 ? 150 . 10.1016/j.acha.2010.04.005 

  13. He T. Kong R. Holmes A. J. Nguyen M. Sabuncu M. R. Eickhoff S. B. . ( 2019 ). Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics . Neuroimage 206 : 116276 . 10.1016/j.neuroimage.2019.116276 31610298 

  14. He Y. Evans A. ( 2010 ). Graph theoretical modeling of brain connectivity . Curr. Opin. Neurol . 23 , 341 ? 350 . 10.1097/WCO.0b013e32833aa567 20581686 

  15. Hjelmervik H. Hausmann M. Osnes B. Westerhausen R. Specht K. ( 2014 ). Resting states are resting traits-an fMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks . PLoS ONE 9 : e103492 . 10.1371/journal.pone.0103492 25057823 

  16. Huang W. Bolton T. A. Medaglia J. D. Bassett D. S. Ribeiro A. Van De Ville D. ( 2018 ). A graph signal processing perspective on functional brain imaging . Proc. IEEE 106 , 868 ? 885 . 10.1109/JPROC.2018.2798928 

  17. Jenkinson M. Beckmann C. F. Behrens T. E. Woolrich M. W. Smith S. M. ( 2012 ). FSL . Neuroimage 62 , 782 ? 790 . 10.1016/j.neuroimage.2011.09.015 21979382 

  18. Kashyap R. Kong R. Bhattacharjee S. Li J. Zhou J. Yeo B. T. ( 2019 ). Individual-specific fmri-subspaces improve functional connectivity prediction of behavior . Neuroimage 189 , 804 ? 812 . 10.1016/j.neuroimage.2019.01.069 30711467 

  19. Kim B.-H. Ye J. C. ( 2020 ). Understanding graph isomorphism network for brain mr functional connectivity analysis . arXiv preprint arXiv:2001.03690 . 

  20. Kipf T. N. Welling M. ( 2016 ). Semi-supervised classification with graph convolutional networks . arXiv preprint arXiv:1609.02907 . 

  21. Ktena S. I. Parisot S. Ferrante E. Rajchl M. Lee M. Glocker B. ( 2017 ). Distance metric learning using graph convolutional networks: application to functional brain networks , in International Conference on Medical Image Computing and Computer-Assisted Intervention ( Quebec City, QC : Springer ), 469 ? 477 . 10.1007/978-3-319-66182-7_54 

  22. Ktena S. I. Parisot S. Ferrante E. Rajchl M. Lee M. Glocker B. . ( 2018 ). Metric learning with spectral graph convolutions on brain connectivity networks . Neuroimage 169 , 431 ? 442 . 10.1016/j.neuroimage.2017.12.052 29278772 

  23. Li X. Dvornek N. C. Zhou Y. Zhuang J. Ventola P. Duncan J. S. ( 2019a ). Graph neural network for interpreting task-fMRI biomarkers , in International Conference on Medical Image Computing and Computer-Assisted Intervention ( Shenzhen : Springer ), 485 ? 493 . 10.1007/978-3-030-32254-0_54 

  24. Li X. Dvornek N. C. Zhuang J. Ventola P. Duncana J. ( 2019b ). Graph embedding using infomax for ASD classification and brain functional difference detection . arXiv preprint arXiv:1908.04769 . 10.1117/12.2549451 

  25. Ma G. Ahmed N. K. Willke T. Sengupta D. Cole M. W. Turk-Browne N. ( 2018 ). Similarity learning with higher-order proximity for brain network analysis . arXiv preprint arXiv:1811.02662 . 

  26. Maaten L. V. D. Hinton G. ( 2008 ). Visualizing data using t-SNE . J. Mach. Learn. Res . 9 , 2579 ? 2605 . 

  27. Mak L. E. Minuzzi L. MacQueen G. Hall G. Kennedy S. H. Milev R. ( 2017 ). The default mode network in healthy individuals: a systematic review and meta-analysis . Brain Connect . 7 , 25 ? 33 . 10.1089/brain.2016.0438 27917679 

  28. Micheloyannis S. Pachou E. Stam C. J. Breakspear M. Bitsios P. Vourkas M. . ( 2006 ). Small-world networks and disturbed functional connectivity in schizophrenia . Schizophrenia Res . 87 , 60 ? 66 . 10.1016/j.schres.2006.06.028 16875801 

  29. Ortega A. Frossard P. Kovaevi J. Moura J. M. Vandergheynst P. ( 2018 ). Graph signal processing: overview, challenges, and applications . Proc. IEEE 106 , 808 ? 828 . 10.1109/JPROC.2018.2820126 

  30. Parisot S. Ktena S. I. Ferrante E. Lee M. Guerrero R. Glocker B. . ( 2018 ). Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease . Med. Image Anal . 48 , 117 ? 130 . 10.1016/j.media.2018.06.001 29890408 

  31. Parisot S. Ktena S. I. Ferrante E. Lee M. Moreno R. G. Glocker B. ( 2017 ). Spectral graph convolutions for population-based disease prediction , in International Conference on Medical Image Computing and Computer-Assisted Intervention ( Quebec City, QC : Springer ), 177 ? 185 . 10.1007/978-3-319-66179-7_21 

  32. Rousseeuw P. J. ( 1987 ). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis . J. Comput. Appl. Math . 20 , 53 ? 65 . 10.1016/0377-0427(87)90125-7 

  33. Salimi-Khorshidi G. Douaud G. Beckmann C. F. Glasser M. F. Griffanti L. Smith S. M. ( 2014 ). Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers . Neuroimage 90 , 449 ? 468 . 10.1016/j.neuroimage.2013.11.046 24389422 

  34. Schaefer A. Kong R. Gordon E. M. Laumann T. O. Zuo X.-N. Holmes A. J. . ( 2017 ). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI . Cereb. Cortex 28 , 3095 ? 3114 . 10.1093/cercor/bhx179 28981612 

  35. Selvaraju R. R. Cogswell M. Das A. Vedantam R. Parikh D. Batra D. ( 2017 ). Grad-CAM: visual explanations from deep networks via gradient-based localization , in Proceedings of the IEEE International Conference on Computer Vision ( Venice ), 618 ? 626 . 10.1109/ICCV.2017.74 

  36. Shervashidze N. Schweitzer P. Leeuwen E. J. V. Mehlhorn K. Borgwardt K. M. ( 2011 ). Weisfeiler-Lehman graph kernels . J. Mach. Learn. Res . 12 , 2539 ? 2561 . 

  37. Shuman D. I. Narang S. K. Frossard P. Ortega A. Vandergheynst P. ( 2013 ). The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains . IEEE Signal Process. Mag . 30 , 83 ? 98 . 10.1109/MSP.2012.2235192 

  38. Sporns O. ( 2018 ). Graph theory methods: applications in brain networks . Dialog. Clin. Neurosci . 20 : 111 . 30250388 

  39. Thomas Yeo B. Krienen F. M. Sepulcre J. Sabuncu M. R. Lashkari D. Hollinshead M. . ( 2011 ). The organization of the human cerebral cortex estimated by intrinsic functional connectivity . J. Neurophysiol . 106 , 1125 ? 1165 . 10.1152/jn.00338.2011 21653723 

  40. Tian L. Wang J. Yan C. He Y. ( 2011 ). Hemisphere-and gender-related differences in small-world brain networks: a resting-state functional MRI study . Neuroimage 54 , 191 ? 202 . 10.1016/j.neuroimage.2010.07.066 20688177 

  41. Van Essen D. C. Smith S. M. Barch D. M. Behrens T. E. Yacoub E. Ugurbil K. . ( 2013 ). The Wu-Minn human connectome project: an overview . Neuroimage 80 , 62 ? 79 . 10.1016/j.neuroimage.2013.05.041 23684880 

  42. Varoquaux G. Raamana P. R. Engemann D. A. Hoyos-Idrobo A. Schwartz Y. Thirion B. ( 2017 ). Assessing and tuning brain decoders: cross-validation, caveats, and guidelines . Neuroimage 145 , 166 ? 179 . 10.1016/j.neuroimage.2016.10.038 27989847 

  43. Velikovi P. Fedus W. Hamilton W. L. Lio P. Bengio Y. Hjelm R. D. ( 2018 ). Deep graph infomax . arXiv preprint arXiv:1809.10341 . 

  44. Wang J. Wang X. Xia M. Liao X. Evans A. He Y. ( 2015 ). Gretna: a graph theoretical network analysis toolbox for imaging connectomics . Front. Hum. Neurosci . 9 : 386 . 10.3389/fnhum.2015.00458 26175682 

  45. Wang J. Zuo X. He Y. ( 2010 ). Graph-based network analysis of resting-state functional MRI . Front. Syst. Neurosci . 4 : 16 . 10.3389/fnsys.2010.00016 20589099 

  46. Weis S. Patil K. R. Hoffstaedter F. Nostro A. Yeo B. T. T. Eickhoff S. B. ( 2019 ). Sex classification by resting state brain connectivity . Cereb. Cortex 30 , 824 ? 835 . 10.1093/cercor/bhz129 31251328 

  47. Weisfeiler B. Lehman A. A. ( 1968 ). A reduction of a graph to a canonical form and an algebra arising during this reduction . Nauchno Technicheskaya Informatsia 2 , 12 ? 16 . 

  48. Wu Z. Pan S. Chen F. Long G. Zhang C. Yu P. S. ( 2019 ). A comprehensive survey on graph neural networks . arXiv preprint arXiv:1901.00596 . 10.1109/TNNLS.2020.2978386 32217482 

  49. Xu C. Li C. Wu H. Wu Y. Hu S. Zhu Y. . ( 2015 ). Gender differences in cerebral regional homogeneity of adult healthy volunteers: a resting-state fMRI study . BioMed Res. Int . 2015. 10.1155/2015/183074 25629038 

  50. Xu K. Hu W. Leskovec J. Jegelka S. ( 2018a ). How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 . 31899441 

  51. Xu K. Li C. Tian Y. Sonobe T. Kawarabayashi K.-I. Jegelka S. ( 2018b ). Representation learning on graphs with jumping knowledge networks . arXiv preprint arXiv:1806.03536 . 

  52. Ye J. C. Sung W. K. ( 2019 ). Understanding geometry of encoder-decoder CNNs , in International Conference on Machine Learning ( Long Beach, CA ), 7064 ? 7073 . 

  53. Zhang C. Dougherty C. C. Baum S. A. White T. Michael A. M. ( 2018 ). Functional connectivity predicts gender: evidence for gender differences in resting brain connectivity . Hum. Brain Mapp . 39 , 1765 ? 1776 . 10.1002/hbm.23950 29322586 

  54. Zhou B. Khosla A. Lapedriza A. Oliva A. Torralba A. ( 2016 ). Learning deep features for discriminative localization , in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ( Las Vegas, NV ), 2921 ? 2929 . 10.1109/CVPR.2016.319 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로