$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of an Apparent Recharge Coefficient (ARC) for Estimating Groundwater Storage Changes due to Precipitation Events Using Time Series Monitoring Data 원문보기

Water, v.12 no.6, 2020년, pp.1675 -   

Lee, Jae Min (Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea) ,  Cho, Sunjoo (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea) ,  Lee, Hyun A (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea) ,  Woo, Nam C. (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea)

Abstract AI-Helper 아이콘AI-Helper

Significant variation in the precipitation events caused by global climate change has made it difficult to manage water resources due to the increased frequency of unexpected droughts and floods. Under these conditions, groundwater is needed to ensure a sustainable water supply; thus, estimates of p...

참고문헌 (46)

  1. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., and Genova, R.C. (2014). Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. 

  2. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment Environ. Res. Lett. 2009 10.1088/1748-9326/4/3/035006 4 035006 

  3. Aslam Groundwater vulnerability to climate change: A review of the assessment methodology Sci. Total Environ. 2018 10.1016/j.scitotenv.2017.08.237 612 853 

  4. Jyrkama The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario) J. Hydrol. 2007 10.1016/j.jhydrol.2007.02.036 338 237 

  5. Singh Towards baseflow index characterization at national scale in New Zealand J. Hydrol. 2019 10.1016/j.jhydrol.2018.11.025 568 646 

  6. Healy Using groundwater levels to estimate recharge Hydrogeol. J. 2002 10.1007/s10040-001-0178-0 10 91 

  7. Moon Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge J. Hydrol. 2004 10.1016/j.jhydrol.2003.12.030 292 198 

  8. 10.1017/CBO9780511780745 Healy, R.W. (2010). Estimating Groundwater Recharge, Cambridge University Press. 

  9. Demlie Assessment and estimation of groundwater recharge for a catchment located in highland tropical climate in central Ethiopia using catchment soil-water balance (SWB) and chloride mass balance (CMB) techniques Environ. Earth Sci. 2015 10.1007/s12665-015-4099-y 74 1137 

  10. Simmers Groundwater recharge: An overview of processes and challenges Hydrogeol. J. 2002 10.1007/s10040-001-0171-7 10 5 

  11. 10.1201/9781351008525 Acworth, I. (2019). Investigating Groundwater. IAH-International Contributions to Hydrogeology (Book 29), CRC Press. 

  12. Ackermann, W.C. (1961). Hydrologic budgets for three small watersheds in Illinois. Illinois State Water Survey, Report of Investigation 40, Illinois State Water Survey. 

  13. Lerner, D.N., Issar, A.S., and Simmers, I. (1990). Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge (International Contributions to Hydrogeology, 8), Verlag Heinz Heise. 

  14. Sophocleous Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects J. Hydrol. 1991 10.1016/0022-1694(91)90016-B 124 229 

  15. Young Large weighing lysimeters for water use and deep percolation studies Soil Sci. 1996 10.1097/00010694-199608000-00004 161 491 

  16. Rosenberry Unsaturated-zone wedge beneath a large, natural lake Water Resour. Res. 2000 10.1029/2000WR900213 36 3401 

  17. Wood Use and misuse of the chloride-mass balance method in estimating ground water recharge Ground Water 1999 10.1111/j.1745-6584.1999.tb00949.x 37 2 

  18. Sharda Estimation of groundwater recharge from water storage structures in a semi-arid climate of India J. Hydrol. 2006 10.1016/j.jhydrol.2006.02.015 329 224 

  19. Flint Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods Hydrogeol. J. 2002 10.1007/s10040-001-0169-1 10 180 

  20. Scanlon Choosing appropriate techniques for quantifying groundwater recharge Hydrogeol. J. 2002 10.1007/s10040-001-0176-2 10 18 

  21. Lanini, S., and Caballero, Y. (2016, January 10-14). Groundwater recharge and associated uncertainty estimation combining multi-method and multi-scale approaches. Proceedings of the 8th International Congress on Environmental Modelling and Software, International Environmental Modelling and Software Society, Toulouse, France. 

  22. 10.1007/978-981-10-3889-1_3 Mukherjee, A., and Bhanja, S.N. (2018). Estimating Present-Day Groundwater Recharge Rates in India. Groundwater of South Asia, Springer. 

  23. Subramanian Assessment of natural groundwater recharge: A case study of North Chennai Aquifer Environ. Geosci. 2019 10.1306/eg.01091918005 26 41 

  24. Voss Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region Water Resour. Res. 2013 10.1002/wrcr.20078 49 904 

  25. Singh Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview Agric. Water Manag. 2016 10.1016/j.agwat.2016.04.021 174 2 

  26. Glass Web-based tool compilation of analytical equations for groundwater management applications Environ. Model. Softw. 2018 10.1016/j.envsoft.2018.07.008 108 1 

  27. Marechal Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture J. Hydrol. 2006 10.1016/j.jhydrol.2006.02.022 329 281 

  28. Labrecque Water-table fluctuation method for assessing aquifer recharge: Application to Canadian aquifers and comparison with other methods Hydrogeol. J. 2020 10.1007/s10040-019-02073-1 28 521 

  29. Nachabe Analytical expressions for transient specific yield and shallow water table drainage Water Resour. Res. 2002 10.1029/2001WR001071 38 1193 

  30. 10.1029/2007WR006096 Gehman, C.L., Harry, D.L., Sanford, W.E., Stednick, J.D., and Beckman, N.A. (2009). Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys. Water Resour. Res., 45. 

  31. Crosbie Constraining the magnitude and uncertainty of specific yield for use in the water table fluctuation method of estimating recharge Water Resour. Res. 2019 10.1029/2019WR025285 55 7343 

  32. Childs The Nonsteady State of the Water Table in Drained Land J. Geophys. Res. 1960 10.1029/JZ065i002p00780 65 780 

  33. Johnson, A.I. (1967). Specific Yield-Compilation of Specific Yields for Various Materials. 

  34. 10.3133/70197609 Prill, R.C., Johnson, A.I., and Morris, D.A. (1965). Specific Yield-Laboratory Experiments Showing the Effect of Time on Column Drainage. 

  35. Shah Variability in specific yield under shallow water table conditions J. Hydrol. Eng. 2009 10.1061/(ASCE)HE.1943-5584.0000121 14 1290 

  36. Nimmo Discrete-storm water-table fluctuation method to estimate episodic recharge Groundwater 2015 10.1111/gwat.12177 53 282 

  37. Zhang Seasonal variation in the precipitation recharge coefficient for the Ordos Plateau, Northwest China Hydrogeol. J. 2019 10.1007/s10040-018-1891-2 27 801 

  38. 10.1029/2004WR003077 Crosbie, R.S., Binning, P., and Kalma, J.D. (2005). A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour. Res., 41. 

  39. Lee Dependency of hydrologic responses and recharge estimates on water-level monitoring locations within a small catchment Geosci. J. 2005 10.1007/BF02910588 9 277 

  40. Kim Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites J. Korean Geo-Environ. Soc. 2010 11 57 

  41. 10.1029/2005JD006470 Earman, S., Campbell, A.R., Phillips, F.M., and Newman, B.D. (2006). Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States. J. Geophys. Res.-Atmos., 111. 

  42. 10.1029/2012WR012319 Huntington, J.L., and Niswonger, R.G. (2012). Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res., 48. 

  43. Eckhardt Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range J. Hydrol. 2003 10.1016/j.jhydrol.2003.08.005 284 244 

  44. K-Water (2007). Groundwater Baseline Survey Report-Boeun Area, (In Korean). 

  45. K-Water (2013). Groundwater Baseline Survey Report-Uiryeong Area, (In Korean). 

  46. Soil Conservation Service (SCS) (1972). National Engineering Handbook, Section 4, Hydrology. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로