$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Machine Learning Approach to Improve Satellite Orbit Prediction Accuracy Using Publicly Available Data

The Journal of the astronautical sciences, v.67 no.2, 2020년, pp.762 - 793  

Peng, Hao ,  Bai, Xiaoli

초록이 없습니다.

참고문헌 (35)

  1. NASA Orbital Debris Program Off. Anz-Meador P. 22 1 1 2018 Anz-Meador P., Shoots D.: Orbital Debris Quarterly News. NASA Orbital Debris Program Off. 22(1), 1-12 (2018). https://www.orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv22i1.pdf 

  2. Kelso, T.S.: Iridium 33/Cosmos 2251 Collision. http://celestrak.com/events/collision.asp (2009) 

  3. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.-T.: Learning from Data. AMLBook. ISBN 1-60049-006-9. http://amlbook.com/ (2012) 

  4. TM Mitchell 1997 Machine Learning. McGraw-Hill Series in Computer Science 1st edn. Mitchell, T.M.: Machine Learning. McGraw-Hill Series in Computer Science, 1st edn. McGraw-Hill Education, New York (1997). http://www.cs.cmu.edu/%0020tom/mlbook.html . ISBN 0-07-042807-7 

  5. Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: The IJCAI-09 Workshop on Artificial Intelligence in Space, vol. 2009, Pasadena, https://www.esa.int/gsp/ACT/doc/AI/pub/ACT-RPR-AI-2009-09-aanapproximation.pdf (2009) 

  6. Hartikainen, J., Seppänen, M., SäRkkÄ, S.: State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction. In: 29Th International Conference on Machine Learning (ICML-12), Edinburgh 

  7. Sharma, S., Cutler, J.W.: Robust Orbit Determination and Classification: A Learning Theoretic Approach IPN Progress Report 42-203. Jet Propulsion Laboratory (2015) 

  8. 10.1016/j.asr.2018.03.001 Peng, H., Bai, X.: Improving Orbit Prediction Accuracy through Supervised Machine Learning. Adv. Space Res. 61(10), 2628-2646, ISSN 02731177. https://doi.org/10.1016/j.asr.2018.03.001 , http://linkinghub.elsevier.com/retrieve/pii/S0273117718302035 (2018a) 

  9. 10.2514/1.A34171 Peng, H., Bai, X.: Artificial Neural Network-Based Machine Learning Approach to Improve Orbit Prediction Accuracy. J. Spacecr. Rocket. 55(5), 1248-1260. ISSN 0022-4650, 1533-6794. https://doi.org/10.2514/1.A34171 (2018b) 

  10. 10.2514/1.I010616 Peng, H., Bai, X.: Exploring capability of Support Vector Machine for improving satellite orbit prediction accuracy. J. Aerosol Inf. Syst. 15(16), 366-381. https://doi.org/10.2514/1.I010616 (2018c) 

  11. Acta Astron. H Peng 142 75 2018 10.1016/j.actaastro.2017.09.030 Peng, H., Bai, X.: Recovering Area-to-Mass Ratio of Resident Space Objects through Data Mining. Acta Astron. 142, 75-86 (2018d). ISSN 0094-5765. https://doi.org/10.1016/j.actaastro.2017.09.030 , http://www.sciencedirect.com/science/article/pii/S0094576517304058 

  12. 10.13140/2.1.4644.2241 Vallado, D., Virgili, B., Flohrer, T.: Improved SSA Through Orbit Determination of Two-Line Element Sets. In: 6th European Conference on Space Debris, Darmstadt, Germnay., https://doi.org/10.13140/2.1.4644.2241 . http://adsabs.harvard.edu/abs/2013ESASP.723E..48V (2013) 

  13. Adv. Space Res. MR Pearlman 30 2 135 2002 10.1016/S0273-1177(02)00277-6 Pearlman, M. R., Degnan, J. J., Bosworth, J. M.: The International Laser Ranging Service. Adv. Space Res. 30 (2), 135-143 (2002). ISSN 0273-1177. https://doi.org/10.1016/S0273-1177(02)00277-6 . http://www.sciencedirect.com/science/article/pii/S0273117702002776 

  14. 10.2514/6.2006-6753 Vallado, D., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting Spacetrack Report #3. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 1-88. American Institute of Aeronautics and Astronautics, ISBN 978-1-62410-048-2. https://doi.org/10.2514/6.2006-6753 (2006) 

  15. Finkleman, D.: “TLE Or Not TLE?” That is the Question. In: AAS/AIAA Astrodynamics Specialist Conference 2007, Mackinac Island (2007) 

  16. Adv. Space Res. X-Z Bai 50 5 560 2012 10.1016/j.asr.2012.05.018 Bai, X.-Z., Chen, L., Tang, Guo-J.: Periodicity characterization of orbital prediction error and Poisson series fitting. Adv. Space Res. 50(5), 560-575 (2012). ISSN 02731177. https://doi.org/10.1016/j.asr.2012.05.018 https://doi.org/10.1016/j.asr.2012.05.018 . http://linkinghub.elsevier.com/retrieve/pii/S0273117712003456 

  17. 10.2514/6.2006-6518 Legendre, P., Deguine, B., Garmier, R., Revelin, B.: Two Line Element Accuracy Assessment Based On A Mixture of Gaussian Laws. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pages 1-13, Reston, American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-048-2. https://doi.org/10.2514/6.2006-6518 (2006) 

  18. Adv. Space Res. R Wang 43 7 1065 2009 10.1016/j.asr.2008.11.017 Wang, R., Liu, J., Zhang, Q. M.: Propagation errors analysis of TLE data. Adv. Space Res. 43(7), 1065-1069 (2009). ISSN 0273-1177. https://doi.org/10.1016/j.asr.2008.11.017 . http://www.sciencedirect.com/science/article/pii/S0273117708006121 

  19. 10.1016/j.asr.2017.02.038 Geul, J., Mooij, E., Noomen, R.: TLE uncertainty estimation using robust weighted differencing. Advances in Space Research, ISSN 0273-1177. https://doi.org/10.1016/j.asr.2017.02.038 . http://www.sciencedirect.com/science/article/pii/S0273117717301515 (2017) 

  20. Stromlo. Acta Astron. J Sang 102 258 2014 10.1016/j.actaastro.2014.06.012 Sang, J., Bennett, J.C., Smith, C.: Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo. Acta Astron. 102, 258-268 (2014). ISSN 00945765. https://doi.org/10.1016/j.actaastro.2014.06.012 https://doi.org/10.1016/j.actaastro.2014.06.012 . http://linkinghub.elsevier.com/retrieve/pii/S0094576514002112 

  21. 10.1007/978-981-10-2963-9_3 Chen, L., Bai, X.-Z., Liang, Y.-G., Li, K.-B.: Orbital Error Analysis Based on Historical Data. In: Orbital Data Applications for Space Objects, pp. 77-105. Springer, Singapore, ISBN 978-981-10-2962-2 978-981-10-2963-9. https://doi.org/10.1007/978-981-10-2963-9_3 (2017) 

  22. J. Guid. Control Dyn. C Früh 35 5 1483 2012 10.2514/1.55843 Früh, C., Schildknecht, T.: Accuracy of Two-Line-Element Data for Geostationary and High-Eccentricity Orbits. J. Guid. Control Dyn. 35(5), 1483-1491 (2012). ISSN 0731-5090. https://doi.org/10.2514/1.55843 

  23. F Kenneth Chan 2008 Spacecraft Collision Probability 10.2514/4.989186 Kenneth Chan, F.: Spacecraft Collision Probability. American Institute of Aeronautics and Astronautics, Inc., Washington (2008). ISBN 978-1-884989-18-6. https://doi.org/10.2514/4.989186 

  24. J. Guid. Control Dyn. S Lemmens 37 3 860 2014 10.2514/1.61300 Lemmens, S., Krag, H.: Two-Line-Elements-Based Maneuver Detection Methods for Satellites in Low Earth Orbit. J. Guid. Control Dyn. 37(3), 860-868 (2014). ISSN 0731-5090. https://doi.org/10.2514/1.61300 

  25. Muldoon, A.R., Elkaim, G.H., Rickard, I.F., Weeden, B.: Improved orbital debris trajectory estimation based on sequential TLE Processing. In: Paper IAC-09. A6. 2.9 Presented at the 60th International Astronautical Congress. Citeseer, Daejeon. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.5898&rep=rep1&type=pdf (2009) 

  26. Adv. Space Res. C Levit 47 7 1107 2011 10.1016/j.asr.2010.10.017 Levit, C., Marshall, W.: Improved orbit predictions using two-line elements. Adv. Space Res. 47(7), 1107-1115 (2011). ISSN 02731177. https://doi.org/10.1016/j.asr.2010.10.017 

  27. Adv. Astron. Sci. MD Hejduk 148 619 2013 Hejduk, M. D., Casali, S. J., Cappellucci, D. A., Ericson, N. L., Snow, D. E.: A catalogue-wide implementation of general Perturbations orbit determination extrapolated from higher order orbital theory solutions. Adv. Astron. Sci. 148, 619-632 (2013). ISSN 00653438 

  28. Sang, J., Li, Bin: A Tle-Based Representation of Precise Orbit Prediction Results. In: The 6Th International Conference on Astrodynamics Tools and Techniques (2016) 

  29. Rivera, J., Bai, X.: Improving the Orbit Propagation Accuracy of Two-Line-Element Satellite. In: 67Th International Astronautical Congress, Guadalajara (2016) 

  30. Neural Process. Lett. B Hammer 17 1 43 2003 10.1023/A:1022936519097 Hammer, B., Gersmann, K.: A Note on the Universal Approximation Capability of Support Vector Machines. Neural Process. Lett. 17(1), 43-53 (2003). ISSN 1370-4621, 1573-773X. https://doi.org/10.1023/A:1022936519097 

  31. 10.1007/978-1-4757-3264-1 Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York, ISBN 978-1-4419-3160-3 978-1-4757-3264-1. https://doi.org/10.1007/978-1-4757-3264-1 (2000) 

  32. Stat. Comput. AJ Smola 14 3 199 2004 10.1023/B:STCO.0000035301.49549.88 Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199-222 (2004). ISSN 0960-3174. https://doi.org/10.1023/B:STCO.0000035301.49549.88 

  33. Maisonobe, L., Pommier, V., Parraud, P.: Orekit: An Open Source Library for Operational Flight Dynamics Applications. In: 4th International Conference on Astrodynamics Tools and Techniques, https://www.researchgate.net/publication/310250345_OREKIT_AN_OPEN_SOURCE_LIBRARY_FOR_OPERATIONAL_FLIGHT_DYNAMICS_APPLICATIONS (2010) 

  34. Ricklefs, R.L.: Consolidated Laser Ranging Prediction Format v1.01. ILRS Data Format and Procedures Working Group, https://ilrs.cddis.eosdis.nasa.gov/docs/cpf_1.00.pdf (2006) 

  35. DA Vallado 1997 Fundamentals of Astrodynamics and Applications 1st edn. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 1st edn. The McGraw-Hill Companies, Inc., New York (1997). ISBN 978-0-07-066834-8. http://www.springer.com/us/book/9780070668348 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로