최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기The Journal of the astronautical sciences, v.67 no.2, 2020년, pp.762 - 793
Peng, Hao , Bai, Xiaoli
초록이 없습니다.
NASA Orbital Debris Program Off. Anz-Meador P. 22 1 1 2018 Anz-Meador P., Shoots D.: Orbital Debris Quarterly News. NASA Orbital Debris Program Off. 22(1), 1-12 (2018). https://www.orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv22i1.pdf
Kelso, T.S.: Iridium 33/Cosmos 2251 Collision. http://celestrak.com/events/collision.asp (2009)
Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.-T.: Learning from Data. AMLBook. ISBN 1-60049-006-9. http://amlbook.com/ (2012)
TM Mitchell 1997 Machine Learning. McGraw-Hill Series in Computer Science 1st edn. Mitchell, T.M.: Machine Learning. McGraw-Hill Series in Computer Science, 1st edn. McGraw-Hill Education, New York (1997). http://www.cs.cmu.edu/%0020tom/mlbook.html . ISBN 0-07-042807-7
Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: The IJCAI-09 Workshop on Artificial Intelligence in Space, vol. 2009, Pasadena, https://www.esa.int/gsp/ACT/doc/AI/pub/ACT-RPR-AI-2009-09-aanapproximation.pdf (2009)
Hartikainen, J., Seppänen, M., SäRkkÄ, S.: State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction. In: 29Th International Conference on Machine Learning (ICML-12), Edinburgh
Sharma, S., Cutler, J.W.: Robust Orbit Determination and Classification: A Learning Theoretic Approach IPN Progress Report 42-203. Jet Propulsion Laboratory (2015)
10.1016/j.asr.2018.03.001 Peng, H., Bai, X.: Improving Orbit Prediction Accuracy through Supervised Machine Learning. Adv. Space Res. 61(10), 2628-2646, ISSN 02731177. https://doi.org/10.1016/j.asr.2018.03.001 , http://linkinghub.elsevier.com/retrieve/pii/S0273117718302035 (2018a)
10.2514/1.A34171 Peng, H., Bai, X.: Artificial Neural Network-Based Machine Learning Approach to Improve Orbit Prediction Accuracy. J. Spacecr. Rocket. 55(5), 1248-1260. ISSN 0022-4650, 1533-6794. https://doi.org/10.2514/1.A34171 (2018b)
10.2514/1.I010616 Peng, H., Bai, X.: Exploring capability of Support Vector Machine for improving satellite orbit prediction accuracy. J. Aerosol Inf. Syst. 15(16), 366-381. https://doi.org/10.2514/1.I010616 (2018c)
Acta Astron. H Peng 142 75 2018 10.1016/j.actaastro.2017.09.030 Peng, H., Bai, X.: Recovering Area-to-Mass Ratio of Resident Space Objects through Data Mining. Acta Astron. 142, 75-86 (2018d). ISSN 0094-5765. https://doi.org/10.1016/j.actaastro.2017.09.030 , http://www.sciencedirect.com/science/article/pii/S0094576517304058
Adv. Space Res. MR Pearlman 30 2 135 2002 10.1016/S0273-1177(02)00277-6 Pearlman, M. R., Degnan, J. J., Bosworth, J. M.: The International Laser Ranging Service. Adv. Space Res. 30 (2), 135-143 (2002). ISSN 0273-1177. https://doi.org/10.1016/S0273-1177(02)00277-6 . http://www.sciencedirect.com/science/article/pii/S0273117702002776
Finkleman, D.: “TLE Or Not TLE?” That is the Question. In: AAS/AIAA Astrodynamics Specialist Conference 2007, Mackinac Island (2007)
Adv. Space Res. X-Z Bai 50 5 560 2012 10.1016/j.asr.2012.05.018 Bai, X.-Z., Chen, L., Tang, Guo-J.: Periodicity characterization of orbital prediction error and Poisson series fitting. Adv. Space Res. 50(5), 560-575 (2012). ISSN 02731177. https://doi.org/10.1016/j.asr.2012.05.018 https://doi.org/10.1016/j.asr.2012.05.018 . http://linkinghub.elsevier.com/retrieve/pii/S0273117712003456
10.2514/6.2006-6518 Legendre, P., Deguine, B., Garmier, R., Revelin, B.: Two Line Element Accuracy Assessment Based On A Mixture of Gaussian Laws. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pages 1-13, Reston, American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-048-2. https://doi.org/10.2514/6.2006-6518 (2006)
Adv. Space Res. R Wang 43 7 1065 2009 10.1016/j.asr.2008.11.017 Wang, R., Liu, J., Zhang, Q. M.: Propagation errors analysis of TLE data. Adv. Space Res. 43(7), 1065-1069 (2009). ISSN 0273-1177. https://doi.org/10.1016/j.asr.2008.11.017 . http://www.sciencedirect.com/science/article/pii/S0273117708006121
10.1016/j.asr.2017.02.038 Geul, J., Mooij, E., Noomen, R.: TLE uncertainty estimation using robust weighted differencing. Advances in Space Research, ISSN 0273-1177. https://doi.org/10.1016/j.asr.2017.02.038 . http://www.sciencedirect.com/science/article/pii/S0273117717301515 (2017)
Stromlo. Acta Astron. J Sang 102 258 2014 10.1016/j.actaastro.2014.06.012 Sang, J., Bennett, J.C., Smith, C.: Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo. Acta Astron. 102, 258-268 (2014). ISSN 00945765. https://doi.org/10.1016/j.actaastro.2014.06.012 https://doi.org/10.1016/j.actaastro.2014.06.012 . http://linkinghub.elsevier.com/retrieve/pii/S0094576514002112
J. Guid. Control Dyn. C Früh 35 5 1483 2012 10.2514/1.55843 Früh, C., Schildknecht, T.: Accuracy of Two-Line-Element Data for Geostationary and High-Eccentricity Orbits. J. Guid. Control Dyn. 35(5), 1483-1491 (2012). ISSN 0731-5090. https://doi.org/10.2514/1.55843
J. Guid. Control Dyn. S Lemmens 37 3 860 2014 10.2514/1.61300 Lemmens, S., Krag, H.: Two-Line-Elements-Based Maneuver Detection Methods for Satellites in Low Earth Orbit. J. Guid. Control Dyn. 37(3), 860-868 (2014). ISSN 0731-5090. https://doi.org/10.2514/1.61300
Muldoon, A.R., Elkaim, G.H., Rickard, I.F., Weeden, B.: Improved orbital debris trajectory estimation based on sequential TLE Processing. In: Paper IAC-09. A6. 2.9 Presented at the 60th International Astronautical Congress. Citeseer, Daejeon. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.5898&rep=rep1&type=pdf (2009)
Adv. Space Res. C Levit 47 7 1107 2011 10.1016/j.asr.2010.10.017 Levit, C., Marshall, W.: Improved orbit predictions using two-line elements. Adv. Space Res. 47(7), 1107-1115 (2011). ISSN 02731177. https://doi.org/10.1016/j.asr.2010.10.017
Adv. Astron. Sci. MD Hejduk 148 619 2013 Hejduk, M. D., Casali, S. J., Cappellucci, D. A., Ericson, N. L., Snow, D. E.: A catalogue-wide implementation of general Perturbations orbit determination extrapolated from higher order orbital theory solutions. Adv. Astron. Sci. 148, 619-632 (2013). ISSN 00653438
Sang, J., Li, Bin: A Tle-Based Representation of Precise Orbit Prediction Results. In: The 6Th International Conference on Astrodynamics Tools and Techniques (2016)
Rivera, J., Bai, X.: Improving the Orbit Propagation Accuracy of Two-Line-Element Satellite. In: 67Th International Astronautical Congress, Guadalajara (2016)
Stat. Comput. AJ Smola 14 3 199 2004 10.1023/B:STCO.0000035301.49549.88 Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199-222 (2004). ISSN 0960-3174. https://doi.org/10.1023/B:STCO.0000035301.49549.88
Maisonobe, L., Pommier, V., Parraud, P.: Orekit: An Open Source Library for Operational Flight Dynamics Applications. In: 4th International Conference on Astrodynamics Tools and Techniques, https://www.researchgate.net/publication/310250345_OREKIT_AN_OPEN_SOURCE_LIBRARY_FOR_OPERATIONAL_FLIGHT_DYNAMICS_APPLICATIONS (2010)
Ricklefs, R.L.: Consolidated Laser Ranging Prediction Format v1.01. ILRS Data Format and Procedures Working Group, https://ilrs.cddis.eosdis.nasa.gov/docs/cpf_1.00.pdf (2006)
DA Vallado 1997 Fundamentals of Astrodynamics and Applications 1st edn. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 1st edn. The McGraw-Hill Companies, Inc., New York (1997). ISBN 978-0-07-066834-8. http://www.springer.com/us/book/9780070668348
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.