최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.10, 2020년, pp.11703 -
Woo, Jiyong (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129 South Korea) , Van Nguyen, Tien (School of Electrical Engineering, Kookmin University, Seoul, 02707 South Korea) , Kim, Jeong Hun (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129 South Korea) , Im, Jong-Pil (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129 South Korea) , Im, Solyee (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129 South Korea) , Kim, Yeriaron (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129 South Korea) , Min, Kyeong-Sik (School of Electrical Engineering, Kookmin University, Seoul, 02707 South Korea) , Moon, Seung Eon (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129 South Korea)
A crossbar array architecture employing resistive switching memory (RRAM) as a synaptic element accelerates vector–matrix multiplication in a parallel fashion, enabling energy-efficient pattern recognition. To implement the function of the synapse in the RRAM, multilevel resistance states are...
1. Merolla P A million spiking-neuron integrated circuit with a scalable communication network and interface Science 2014 345 6197 668 673 10.1126/science.1254642 25104385
2. LuCun Y Bengio Y Hinton G Deep learning Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
3. Hu, M. et al., Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication. in ACM/EDAC/IEEE Design Automation Conference (DAC) (2016).
4. Vanhoucke, V., Senior, A. & Mao, M. Improving the speed of neural networks on CPUs. in Deep learning and unsupervised feature learning workshop (NIPS) . 1?8 (2011).
5. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. in Advances in Neural Information Processing Systems (NIPS) . 1?9 (2012).
6. Ielmini D Wong H-SP In-memory computing with resistive switching devices Nat. Eelectron. 2018 1 333 343 10.1038/s41928-018-0092-2
7. Xia Q Memristor-CMOS hybrid integrated circuits for reconfigurable logic Nano Lett. 2009 9 10 3640 3645 10.1021/nl901874j 19722537
8. Yu S Neuro-inspired computing with emerging nonvolatile memorys Proc. IEEE 2018 106 2 260 285 10.1109/JPROC.2018.2790840
9. Ambrogio S Equivalent-accuracy accelerated neural-network training using analogue memory Nature 2018 558 60 67 10.1038/s41586-018-0180-5 29875487
10. Srinivasan G Sengupta A Roy K Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning Sci. Rep. 2016 6 29545 10.1038/srep29545 27405788
11. Boyn S Learning through ferroelectric domain dynamics in solid-state synapses Nat. Commun. 2017 8 14736 10.1038/ncomms14736 28368007
12. Fuller E Li-ion synaptic transistor for low power analog computing Adv. Mater. 2017 29 4 1604310 10.1002/adma.201604310
13. Yang J Strukov D Stewart D Memristive devices for computing Nat. Nanotechnol. 2013 8 1 13 10.1038/nnano.2012.240 23269430
14. Woo J Improved synaptic behavior under identical pulses using AlO x /HfO 2 bilayer RRAM array for neuromorphic systems IEEE Electron Device Lett. 2016 37 8 994 997 10.1109/LED.2016.2582859
15. Pedretti G Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity Sci. Rep. 2017 7 5288 10.1038/s41598-017-05480-0 28706303
16. Chakrabarti B A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit Sci. Rep. 2017 7 42429 10.1038/srep42429 28195239
17. Woo J Yu S Resistive memory-based analog synapse: the pursuit for linear and symmetric weight update IEEE Nanatechnol. Mag. 2018 12 3 36 44 10.1109/MNANO.2018.2844902
18. Prakash A Demonstration of low power 3-bit multilevel cell characteristics in a TaO x -based RRAM by stack engineering IEEE Electron Device Lett. 2015 36 1 32 34 10.1109/LED.2014.2375200
19. Stathopoulos S Multibit memory operation of metal-oxide bi-layer memristors Sci. Rep. 2017 7 17532 10.1038/s41598-017-17785-1 29235524
20. Xia, Q. et al., Memristive crossbar arrays for brain-inspired computing. nature materials, 18, pp. 309?323 (2019).
21. Woo J Impact of selector devices in analog RRAM-based crossbar arrays for inference and training of neuromorphic system IEEE Trans. Very Large Scale Integr. Syst. 2019 27 9 2205 2212 10.1109/TVLSI.2019.2917764
22. Chen, P. & Yu, S. Stuck-at-fault tolerant schemes for memristor crossbar array-based neural networks. in IEEE International Reliability Physics Symposium . 5C.4.1?5C.4.4 (2018).
23. Wu, H. et al., Reliability perspective on neuromorphic computing based on analog RRAM. in IEEE International Reliability Physics Symposium (2019).
24. Yeo I Chu M Gi S Hwang H Lee B Stuck-at-fault tolerant schemes for memristor crossbar array-based neural networks IEEE Trans. Electron Devices 2019 66 7 10.1109/TED.2019.2914460
25. Nguyen T Pham K Min K Hybrid circuit of memristor and complementary metal-oxide-semiconductor for defect-tolerant spatial pooling with boost-factor adjustment Materials. 2019 12 2122 10.3390/ma12132122
26. Cui Y Ahmad S Hawkins J The HTM spatial pooler-a neocortical algorithm for online sparse distributed coding Front. Comput. Neurosci. 2017 11 111 10.3389/fncom.2017.00111 29238299
27. Krestinskaya, O. et al., Analog HTM: memristive spatial pooler learning with backpropagation. in IEEE International Conference on Artificial Intelligence Circuits and Systems (2019).
28. Tunali M A survey of fault-tolerance algorithms for reconfigurable nano-crossbar arrays ACM Comput. Surv. 2017 50 79 1 35
29. Degraeve, R., et al., Dynamic ‘hour glass’ model for SET and RESET in HfO 2 RRAM. Symposium on VLSI Technology, T8.5 (2012).
30. Gilmer, D.C. et al., Effects of RRAM stack configuration on forming voltage and current overshoot. in IEEE International Memory Workshop (2011).
31. Sivan M All WSe 2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration Nat. Commun. 2019 10 5201 10.1038/s41467-019-13176-4 31729375
32. Nail, C. et al., Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations. in IEEE International Electron Devices Meeting (2016).
33. Kim S Lim M Kim Y Kim H Choi S Impact of synaptic device variations on pattern recognition accuracy in a hardware neural network Sci. Rep. 2018 8 2638 10.1038/s41598-018-21057-x 29422641
34. Kim S Kim H Choi S Impact of synaptic device variations on classification accuracy in a binarized neural network Sci. Rep. 2019 9 15237 10.1038/s41598-019-51814-5 31645636
35. Koo Y Accelerated retention test method by controlling ion migration barrier of resistive random access memory IEEE Electron Device Lett. 2015 36 3 238 240 10.1109/LED.2015.2394302
36. Sung C Effect of a self-limited reset operation on the reset breakdown characteristics of a monolithically integrated 1T1R RRAM ECS J. Solid State Sci. Technol. 2017 6 7 440 10.1149/2.0281707jss
37. Yu M Novel vertical 3D structure of TaO x -based RRAM with self-localized switching region by sidewall electrode oxidation Sci. Rep. 2016 6 21020 10.1038/srep21020 26884054
38. Grossi A Impact of the precursor chemistry and process conditions on the cell-to-cell variability in 1T?1R based HfO 2 RRAM devices Sci. Rep. 2018 8 11160 10.1038/s41598-018-29548-7 30042433
39. Calderoni, A. Sills, S., & Ramaswamy, N. Performance comparison of O-based and Cu-based ReRAM for high-density applications. in International Memory Workshop (2014).
40. Aratani, K. et al., A novel resistance memory with high scalability and nanosecond switching. in IEEE International Electron Devices Meeting (2008).
41. Woo J Introduction of WO 3 layer in a Cu-based Al 2 O 3 conductive bridge RAM system for robust cycling and large memory window IEEE J. Electron Devices Soc. 2016 4 3 10.1109/JEDS.2016.2526632
42. Celano U Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices Nano Lett. 2014 14 5 2401 2406 10.1021/nl500049g 24720425
43. Belmonte A Origin of the current discretization in deep reset states of an Al 2 O 3 /Cu-based conductive-bridging memory, and impact on state level and variability Appl. Phys. Lett. 2014 104 23 3508 10.1063/1.4883856
44. Yu, S. et al., Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect. in IEEE International Electron Devices Meeting (2015).
45. Chen C Endurance degradation mechanisms in TiN\Ta 2 O 5 \Ta resistive random-access memory cells Appl. Phys. Lett. 2015 106 5 053501 10.1063/1.4907573
46. Tunali, O. et al., Logic synthesis and defect tolerance for memristive crossbar arrays. Design, Automation & Test in Europe Conference & Exhibition (DATE) (2018).
47. Paul, S., Charkraborty, R., & Bhunia, S. Defect-aware configurable computing in nanoscale crossbar for improved yield. in IEEE International On-Line Testing Symposium . (2007).
48. Truong S Pham K Min K Spatial-pooling memristor crossbar converting sensory information to sparse distributed representation of cortical neurons IEEE Trans. Nanotechnol. 2018 17 482 491 10.1109/TNANO.2018.2815624
49. Pham K Asymmetrical training scheme of binary-memristor-crossbar-based neural networks for energy-efficient edge-computing nanoscale systems Micromachines 2019 10 141 10.3390/mi10020141
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.