$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] VEGFR2 signaling drives meningeal vascular regeneration upon head injury 원문보기

Nature communications, v.11 no.1 = v.11, 2020년, pp.3866 -   

Koh, Bong Ihn (KI for Bio-century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Lee, Hyuek Jong (Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Kwak, Pil Ae (Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Yang, Myung Jin (Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Kim, Ju-Hee (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Kim, Hyung-Seok (Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, 61463 Republic of Korea) ,  Koh, Gou Young (KI for Bio-century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Kim, Injune (KI for Bio-century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Upon severe head injury (HI), blood vessels of the meninges and brain parenchyma are inevitably damaged. While limited vascular regeneration of the injured brain has been studied extensively, our understanding of meningeal vascular regeneration following head injury is quite limited. Here, we identi...

참고문헌 (54)

  1. 1. Roozenbeek B Maas AIR Menon DK Changing patterns in the epidemiology of traumatic brain injury Nat. Rev. Neurol. 2013 9 231 236 23443846 

  2. 2. Nguyen R The international incidence of traumatic brain injury: a systematic review and meta-analysis Can. J. Neurol. Sci. 2016 43 774 785 27670907 

  3. 3. Blennow K Traumatic brain injuries Nat. Rev. Dis. Prim. 2016 2 16084 27853132 

  4. 4. Rusnak M Traumatic brain injury: giving voice to a silent epidemic Nat. Rev. Neurol. 2013 9 186 187 23478463 

  5. 5. Dekosky ST Blennow K Ikonomovic MD Gandy S Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers Nat. Rev. Neurol. 2013 9 192 200 23558985 

  6. 6. Decimo I Fumagalli G Berton V Krampera M Bifari F Meninges: from protective membrane to stem cell niche Am. J. Stem Cells 2012 1 92 105 23671802 

  7. 7. Weller RO Sharp MM Christodoulides M Carare RO Møllgard K The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Acta Neuropathol. 2018 135 363 385 29368214 

  8. 8. Mecheri B Paris F Lubbert H Histological investigations on the dura mater vascular system of mice Acta Histochem. 2018 120 846 857 30292321 

  9. 9. Mastorakos P McGavern D The anatomy and immunology of vasculature in the central nervous system Sci. Immunol. 2019 4 eaav0492 31300479 

  10. 10. Rua R McGavern DB Advances in meningeal immunity Trends Mol. Med. 2018 24 542 559 29731353 

  11. 11. Zhang, Y., Xiong, Y., Mahmood, A., Zhang, Z. G. & Chopp, M. Angiogenesis and functional recovery after traumatic brain injury. in Vascular Mechanisms in CNS Trauma 141?156 (Springer New York, 2014). 

  12. 12. Salehi A Zhang JH Obenaus A Response of the cerebral vasculature following traumatic brain injury J. Cereb. Blood Flow. Metab. 2017 37 2320 2339 28378621 

  13. 13. Xiong Y Mahmood A Chopp M Angiogenesis, neurogenesis and brain recovery of function following injury Curr. Opin. Investig. Drugs 2010 11 298 308 20178043 

  14. 14. Russo MV Latour LL McGavern DB Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury Nat. Immunol. 2018 19 442 452 29662169 

  15. 15. Labat-gest, V. & Tomasi, S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J. Vis. Exp . 50370 (2013). 

  16. 16. Jha RM Kochanek PM Simard JM Pathophysiology and treatment of cerebral edema in traumatic brain injury Neuropharmacology 2019 145 230 246 30086289 

  17. 17. Simons M Gordon E Claesson-Welsh L Mechanisms and regulation of endothelial VEGF receptor signalling Nat. Rev. Mol. Cell Biol. 2016 17 611 625 27461391 

  18. 18. Saharinen P Eklund L Alitalo K Therapeutic targeting of the angiopoietin-TIE pathway Nat. Rev. Drug Discov. 2017 16 635 661 28529319 

  19. 19. Benedito R The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis Cell 2009 137 1124 1135 19524514 

  20. 20. Bray SJ Notch signalling in context Nat. Rev. Mol. Cell Biol. 2016 17 722 735 27507209 

  21. 21. Okabe K Neurons limit angiogenesis by titrating VEGF in retina Cell 2014 159 584 596 25417109 

  22. 22. Sison K Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling J. Am. Soc. Nephrol. 2010 21 1691 1701 20688931 

  23. 23. Savant S The orphan receptor tie1 controls angiogenesis and vascular remodeling by differentially regulating tie2 in tip and stalk cells Cell Rep. 2015 12 1761 1773 26344773 

  24. 24. Hozumi K Delta-like 4 is indispensable in thymic environment specific for T cell development J. Exp. Med. 2008 205 2507 2513 18824583 

  25. 25. B?umer S Vascular endothelial cell-specific phosphotyrosine phophatase (VE-PTP) activity is required for blood vessel development Blood 2006 107 4754 4762 16514057 

  26. 26. Hayashi M VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation Nat. Commun. 2013 4 1672 23575676 

  27. 27. Armulik A Genove G Betsholtz C Pericytes: developmental, physiological, and pathological perspectives, problems, and promises Dev. Cell 2011 21 193 215 21839917 

  28. 28. Uemura A Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells J. Clin. Invest. 2002 110 1619 1628 12464667 

  29. 29. Schain AJ Activation of pial and dural macrophages and dendritic cells by cortical spreading depression Ann. Neurol. 2018 83 508 521 29394508 

  30. 30. Cho C-H Angiogenic role of LYVE-1-positive macrophages in adipose tissue Circ. Res. 2007 100 e47 e57 17272806 

  31. 31. Dick SA Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction Nat. Immunol. 2019 20 29 39 30538339 

  32. 32. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 15 , 363 (2019). 

  33. 33. Corliss BA Azimi MS Munson JM Peirce SM Murfee WL Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis Microcirculation 2016 23 95 121 26614117 

  34. 34. Wynn TA Vannella KM Macrophages in tissue repair, regeneration, and fibrosis Immunity 2016 44 450 462 26982353 

  35. 35. Choi D Laminar flow downregulates Notch activity to promote lymphatic sprouting J. Clin. Invest. 2017 127 1225 1240 28263185 

  36. 36. Inai T Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts Am. J. Pathol. 2004 165 35 52 15215160 

  37. 37. Xiong Y Mahmood A Chopp M Animal models of traumatic brain injury Nat. Rev. Neurosci. 2013 14 128 142 23329160 

  38. 38. Namjoshi DR Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective Dis. Model. Mech. 2013 6 1325 1338 24046354 

  39. 39. Ma X Animal models of traumatic brain injury and assessment of injury severity Mol. Neurobiol. 2019 56 5332 5345 30603958 

  40. 40. Louveau A Structural and functional features of central nervous system lymphatic vessels Nature 2015 523 337 341 26030524 

  41. 41. Aspelund A A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules J. Exp. Med. 2015 212 991 999 26077718 

  42. 42. Ahn JH Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid Nature 2019 572 62 66 31341278 

  43. 43. Thau-Zuchman O Shohami E Alexandrovich AG Leker RR Vascular endothelial growth factor increases neurogenesis after traumatic brain injury J. Cereb. Blood Flow. Metab. 2010 30 1008 1016 20068579 

  44. 44. Lu KT Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the Raf/MEK/ERK cascade J. Neurotrauma 2011 28 441 450 21091268 

  45. 45. Li M The role of vascular endothelial growth factor and vascular endothelial growth inhibitor in clinical outcome of traumatic brain injury Clin. Neurol. Neurosurg. 2016 144 7 13 26945876 

  46. 46. Geiseler, S. J. & Morland, C. The janus face of VEGF in stroke. Int. J. Mol. Sci. 19 , 1362 (2018). 

  47. 47. Miquerol L Gertsenstein M Harpal K Rossant J Nagy A Multiple developmental roles of VEGF suggested by a LacZ-tagged allele Dev. Biol. 1999 212 307 322 10433823 

  48. 48. Chen Q Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells Nat. Commun. 2016 7 12422 27516371 

  49. 49. Seo H Hwang Y Choe K Kim P In vivo quantitation of injected circulating tumor cells from great saphenous vein based on video-rate confocal microscopy Biomed. Opt. Express 2015 6 2158 26114035 

  50. 50. Han, S. et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci. Transl. Med . 8 , 355ra55 (2016). 

  51. 51. Kokubu, H. & Lim, J. X-gal staining on adult mouse brain sections. Bio Protoc. 4 , e1064 (2014). 

  52. 52. Stuart T Comprehensive integration of single-cell data Cell 2019 177 1888 1902.e21 31178118 

  53. 53. Wolock SL Lopez R Klein AM Scrublet: computational identification of cell doublets in single-cell transcriptomic data Cell Syst. 2019 8 281 291.e9 30954476 

  54. 54. Finak, G. et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol . 16 , 278 (2015). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로