$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Computational inference of cancer-specific vulnerabilities in clinical samples 원문보기

Genome biology, v.21 no.1 = v.21, 2020년, pp.155 -   

Jang, Kiwon (Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 Republic of Korea) ,  Park, Min Ji (Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea) ,  Park, Jae Soon (Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 Republic of Korea) ,  Hwangbo, Haeun (Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 Republic of Korea) ,  Sung, Min Kyung (Department of Bio and Brain Engineering, KAIST, Daejeon, 34141 Republic of Korea) ,  Kim, Sinae (Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea) ,  Jung, Jaeyun (Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea) ,  Lee, Jong Won (Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea) ,  Ahn, Sei-Hyun (Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea) ,  Chang, Suhwan (Department of Biomedical Sciences, Univers) ,  Choi, Jung Kyoon

Abstract AI-Helper 아이콘AI-Helper

BackgroundSystematic in vitro loss-of-function screens provide valuable resources that can facilitate the discovery of drugs targeting cancer vulnerabilities.ResultsWe develop a deep learning-based method to predict tumor-specific vulnerabilities in patient samples by leveraging a wealth of in vitro...

참고문헌 (52)

  1. 1. Hart T Chandrashekhar M Aregger M Steinhart Z Brown KR MacLeod G High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities Cell 2015 163 1515 1526 10.1016/j.cell.2015.11.015 26627737 

  2. 2. Wang T Birsoy K Hughes NW Krupczak KM Post Y Wei JJ Identification and characterization of essential genes in the human genome Science 2015 350 1096 1101 10.1126/science.aac7041 26472758 

  3. 3. Marcotte R Sayad A Brown KR Sanchez-Garcia F Reimand J Haider M Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance Cell 2016 164 293 309 10.1016/j.cell.2015.11.062 26771497 

  4. 4. Tsherniak A Vazquez F Montgomery PG Weir BA Kryukov G Cowley GS Defining a cancer dependency map Cell 2017 170 564 576.e16 10.1016/j.cell.2017.06.010 28753430 

  5. 5. McDonald ER de Weck A Schlabach MR Billy E Mavrakis KJ Hoffman GR Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening Cell 2017 170 577 592.e10 10.1016/j.cell.2017.07.005 28753431 

  6. 6. Wang T Yu H Hughes NW Liu B Kendirli A Klein K Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras Cell 2017 168 890 903.e15 10.1016/j.cell.2017.01.013 28162770 

  7. 7. Patel SJ Sanjana NE Kishton RJ Eidizadeh A Vodnala SK Cam M Identification of essential genes for cancer immunotherapy Nature 2017 548 537 542 10.1038/nature23477 28783722 

  8. 8. McFarland JM Ho ZV Kugener G Dempster JM Montgomery PG Bryan JG Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration Nat Commun 2018 9 4610 10.1038/s41467-018-06916-5 30389920 

  9. 9. Meyers RM Bryan JG McFarland JM Weir BA Sizemore AE Xu H Computational correction of copy number effect improves specificity of CRISPR?Cas9 essentiality screens in cancer cells Nat Genet 2017 49 1779 1784 10.1038/ng.3984 29083409 

  10. 10. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR?Cas9 screens. Nature. 2019;568(7753):511?6. 

  11. 11. Kim K Yang W Lee KS Bang H Jang K Kim SC Global transcription network incorporating distal regulator binding reveals selective cooperation of cancer drivers and risk genes Nucleic Acids Res 2015 43 5716 5729 10.1093/nar/gkv532 26001967 

  12. 12. Basso K Margolin AA Stolovitzky G Klein U Dalla-Favera R Califano A Reverse engineering of regulatory networks in human B cells Nat Genet 2005 37 382 390 10.1038/ng1532 15778709 

  13. 13. The Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours Nature 2012 490 61 70 10.1038/nature11412 23000897 

  14. 14. Jang K Kim K Cho A Lee I Choi JK Network perturbation by recurrent regulatory variants in cancer PLoS Comput Biol 2017 13 e1005449 10.1371/journal.pcbi.1005449 28333928 

  15. 15. Hart T, Moffat J. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics. 2016;17:164. 

  16. 16. Marcotte R Brown KR Suarez F Sayad A Karamboulas K Krzyzanowski PM Essential gene profiles in breast, pancreatic, and ovarian cancer cells Cancer Discov 2012 2 172 189 10.1158/2159-8290.CD-11-0224 22585861 

  17. 17. Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. 10.1186/1471-2105-14-128. Published 2013 Apr 15. 

  18. 18. Eisenberg E, Levanon EY. Human housekeeping genes, revisited [published correction appears in Trends Genet. 2014 Mar;30(3):119?20]. Trends Genet. 2013;29(10):569?74. 10.1016/j.tig.2013.05.010. 

  19. 19. Hart T Brown KR Sircoulomb F Rottapel R Moffat J Measuring error rates in genomic perturbation screens: gold standards for human functional genomics Mol Syst Biol 2014 10 733 10.15252/msb.20145216 24987113 

  20. 20. Xia F Lee CW Altieri DC Tumor cell dependence on Ran-GTP-directed mitosis Cancer Res 2008 68 1826 1833 10.1158/0008-5472.CAN-07-5279 18339863 

  21. 21. Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, et al. Cancer vulnerabilities unveiled by genomic loss. Cell. 2012;150(4):842?54. 

  22. 22. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68(9):3077?80. 

  23. 23. O’Neil NJ Bailey ML Hieter P Synthetic lethality and cancer Nat Rev Genet 2017 18 613 623 10.1038/nrg.2017.47 28649135 

  24. 24. Ly TK, Wang J, Pereira R, Rojas KS, Peng X, Feng Q, et al. Activation of the ran GTPase is subject to growth factor regulation and can give rise to cellular transformation. J Biol Chem. 2010;285(8):5815?26. 

  25. 25. Spagnolo L, Rivera-Calzada A, Pearl LH, Llorca O. Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Cell. 2006;22(4):511?9. 

  26. 26. Lee KY Im J-S Shibata E Dutta A ASF1a promotes non-homologous end joining repair by facilitating phosphorylation of MDC1 by ATM at double-strand breaks Mol Cell 2017 68 61 75.e5 10.1016/j.molcel.2017.08.021 28943310 

  27. 27. Dietlein F, Thelen L, Reinhardt HC. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 2014;30(8):326?39. 

  28. 28. Dietlein F, Thelen L, Jokic M, Jachimowicz RD, Ivan L, Knittel G, et al. A functional cancer genomics screen identifies a druggable synthetic lethal interaction between MSH3 and PRKDC. Cancer Discov. 2014;4(5):592?605. 

  29. 29. Jung J, Jang K, Ju JM, Lee E, Lee JW, Kim HJ, et al. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model. Cancer Lett. 2018;428:127?138. 

  30. 30. Ran FA Hsu PD Wright J Agarwala V Scott DA Zhang F Genome engineering using the CRISPR-Cas9 system Nat Protoc 2013 8 2281 2308 10.1038/nprot.2013.143 24157548 

  31. 31. Han W Lo H-W Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations Cancer Lett 2012 318 124 134 10.1016/j.canlet.2012.01.011 22261334 

  32. 32. Dittmann K Mayer C Fehrenbacher B Schaller M Kehlbach R Rodemann HP Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654 FEBS Lett 2010 584 3878 3884 10.1016/j.febslet.2010.08.005 20692258 

  33. 33. Pierce AJ Johnson RD Thompson LH Jasin M XRCC3 promotes homology-directed repair of DNA damage in mammalian cells Genes Dev 1999 13 2633 2638 10.1101/gad.13.20.2633 10541549 

  34. 34. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 2005;434(7035):913?7. 

  35. 35. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917?921. 10.1038/nature03445. 

  36. 36. Fong PC Boss DS Yap TA Tutt A Wu P Mergui-Roelvink M Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers N Engl J Med 2009 361 123 134 10.1056/NEJMoa0900212 19553641 

  37. 37. Gurley KE Kemp CJ Synthetic lethality between mutation in Atm and DNA-PK (cs) during murine embryogenesis Curr Biol 2001 11 191 194 10.1016/S0960-9822(01)00048-3 11231155 

  38. 38. Riabinska A, Daheim M, Herter-Sprie GS, Winkler J, Fritz C, Hallek M, et al. Therapeutic targeting of a robust non-oncogene addiction to PRKDC in ATM-defective tumors. Sci Transl Med. 2013;5(189):189ra78. 

  39. 39. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. BioMed Cent; 2006;7:S7. 

  40. 40. Reynolds A Leake D Boese Q Scaringe S Marshall WS Khvorova A Rational siRNA design for RNA interference Nat Biotechnol 2004 22 326 330 10.1038/nbt936 14758366 

  41. 41. Bergstra J Breuleux O Bastien FF Lamblin P Pascanu R Desjardins G Theano: a CPU and GPU math compiler in Python. Proc 9th Python Sci Conf (SCIPY 2010) 2010 

  42. 42. Erhan D Courville A Vincent P Why does unsupervised pre-training help deep learning? J Mach Learn Res 2010 11 625 660 

  43. 43. Zou H Hastie T Regularization and variable selection via the elastic net J R Stat Soc Ser B Stat Methodol 2005 67 301 320 10.1111/j.1467-9868.2005.00503.x 

  44. 44. Sutskever I Martens J Dahl GE Hinton GE On the importance of initialization and momentum in deep learning Jmlr W&Cp 2013 28 1139 1147 

  45. 45. Liaw A Wiener M Classification and regression by randomForest R News 2002 2 18 22 

  46. 46. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F, Chang C-C, et al. Misc functions of the Department of Statistics, Probability Theory Group, TU Wien. R Packag. version 1.6?2. 2015. https://cran.r-project.org/web/packages/e1071/index.html . 

  47. 47. Venables WN Ripley BD Modern applied statistics with S Fourth edition by. World 2002 

  48. 48. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. 

  49. 49. Futreal PA Coin L Marshall M Down T Hubbard T Wooster R A census of human cancer genes Nat Rev Cancer 2004 4 177 183 10.1038/nrc1299 14993899 

  50. 50. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546?58. 10.1126/science.1235122. 

  51. 51. Jang K, Park MJ, Park JS, Hwangbo H, Sung MK, Kim S, Jung J, Lee JW, Ahn S-Y, Chang S, Choi JK. Computational inference of cancer-specific vulnerabilities in clinical samples. GitHub. http://github.com/kaistomics/DeepDependency (2020). 

  52. 52. Jang K, Park MJ, Park JS, Hwangbo H, Sung MK, Kim S, Jung J, Lee JW, Ahn S-Y, Chang S, Choi JK. Computational inference of cancer-specific vulnerabilities in clinical samples. Zenodo. 10.5281/zenodo.3885013 (2020). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로