$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Authenticating bioplastics using carbon and hydrogen stable isotopes – An alternative analytical approach

Rapid communications in mass spectrometry : RCM, v.35 no.9, 2021년, pp.e9051 -   

Rogers, Karyne M. (National Isotope Centre, GNS Science, Box 30‐) ,  Turnbull, Jocelyn C. (368, Lower Hutt, PO, New Zealand) ,  Dahl, Jenny (National Isotope Centre, GNS Science, Box 30‐) ,  Phillips, Andy (368, Lower Hutt, PO, New Zealand) ,  Bridson, Jamie H. (National Isotope Centre, GNS Science, Box 30‐) ,  Raymond, Laura G. (368, Lower Hutt, PO, New Zealand) ,  Liu, Zhi (National Isotope Centre, GNS Science, Box 30‐) ,  Yuan, Yuwei (368, Lower Hutt, PO, New Zealand) ,  Hill, Stefan J. (National Isotope Centre, GNS Science, Box 30‐)

Abstract AI-Helper 아이콘AI-Helper

RationaleA combination of stable carbon (δ13C) and hydrogen (δ2H) isotope ratios and carbon content (% C) was evaluated as a rapid, low‐cost analytical approach to authenticate bioplastics, complementing existing radiocarbon (14C) and Fourier transform infrared (FTIR) analytical me...

참고문헌 (47)

  1. Jung MR , Horgen FD , Orski SV , et al. Validation of ATR FT‐IR to identify polymers of plastic marine debris, includingthose ingested by marine organisms . Mar Pollut Bull . 2018 ; 127 : 704 ‐ 716 . https://doi.org/10.1016/j.marpolbul.2017.12.061 

  2. Geyer R , Jambeck JR , Law KL . Production, use, and fate of all plastics ever made . Sci Adv . 2017 ; 3 ( 7 ): e1700782 . https://doi.org/10.1126/sciadv.1700782 

  3. Schneiderman DK , Hillmyer MA . 50th anniversary perspective: There is a great future in sustainable polymers . Macromolecules . 2017 ; 50 ( 10 ): 3733 ‐ 3749 . https://doi.org/10.1021/acs.macromol.7b00293 

  4. Market share of bioplastics worldwide from 2015 to 2030 . https://www.statista.com/statistics/981791/market-share-bioplastics-worldwide/. Accessed 14 April 2020. 

  5. van den Oever M , Molenveld K , van der Zee M , Bos H . Bio‐based and biodegradable plastics – Facts and Figures. Wageningen Food & Biobased Research number 1722 . https://www.wur.nl/upload_mm/1/e/7/01452551-06c5-4dc3-b278-173da53356bb_170421%20Report%20Bio-based%20Plastic%20Facts.pdf. Accessed 14 April 2020. 

  6. Bioplastics Magazine . Coca‐Cola Introduced World's First 100% Biobased PET Bottle . http://www.bioplasticsmagazine.com/en/news/meldungen/20150604_Coca-Cola.php. Accessed 14 April 2020. 

  7. LEGO's first sustainable bricks are here! . https://brickset.com/article/34660/lego-s-first-sustainable-bricks-are-here. Accessed 14 April 2020. 

  8. ASTM . ASTM International Standard Practice for Coding Plastic Manufactured Articles for Resin Identification. Designation: D7611/D7611M − 13ε1 . 2013 . 

  9. Berto D , Rampazzo F , Gion C , et al. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS) . Chemosphere . 2017 ; 176 : 47 ‐ 56 . https://doi.org/10.1016/j.chemosphere.2017.02.090 

  10. Kalia VC , Raizada N , Sonakya V . Bioplastics . J Sci Ind Res . 2000 ; 59 : 433 ‐ 445 . 

  11. Naarajan V , Mohanty AK , Msra M . Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance . ACS Sustainable Chem Eng . 2016 ; 4 : 2899 ‐ 2916 . https://doi.org/10.1021/acssuschemeng.6b00321 

  12. Haddadi MH , Asadolahi R , Negahdari B . The bioextraction of bioplastics with focus on polyhydroxybutyrate: A review . Int J Environ Sci Technol . 2019 ; 16 : 3935 ‐ 3948 . https://doi.org/10.1007/s13762-019-02352-0 

  13. Wijeyekoon S , Carere CR , West M , Nath S , Gapes D . Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors . Water Res . 2018 ; 140 : 1 ‐ 11 . https://doi.org/10.1016/j.watres.2018.04.017 

  14. Lorenzo ML , Longo A , Androsch R . Polyamide 11/poly(butylene succinate) bio‐based polymer blends . Dent Mater . 2019 ; 12 : 2833 . https://doi.org/10.3390/ma12172833 

  15. Spierling S , Rottger C , Venkatachalam V , Mudersbach M , Herrmann C , Endres H‐J . Bio‐based plastics – A building block for the circular economy . Procedia CRIP . 2018 ; 69 : 573 ‐ 578 . https://doi.org/10.1016/j.procir.2017.11.017 

  16. Mecozzi M , Pietroletti M , Monakhova YB . FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies . Mar Pollut Bull . 2016 ; 106 ( 1 ): 155 ‐ 161 . https://doi.org/10.1016/j.marpolbul.2016.03.012 

  17. Bio‐Rad. KnowItAll Spectroscopy Software . 2018 . 

  18. Shen L , Haufe J , Patel MK . Product Overview and Market Projection of Emerging Bio‐Based Plastics . Utecht, The Netherlands : Utrecht University, Copernicus Institute for Sustainable Development and Innovation ; 2009 . 

  19. Chen G‐Q , Patel MK . Plastics derived from biological sources: Present and future: A technical and environmental review . Chem Rev . 2012 ; 112 ( 4 ): 2082 ‐ 2099 . https://doi.org/10.1021/cr200162d 

  20. Quarta G , Calcagnile L , Giffoni M , Braione E , D'Elia M . Determination of the biobased content in plastics by radiocarbon . Radiocarbon . 2013 ; 55 ( 2‐3 ): 1834 ‐ 1844 . https://doi.org/10.2458/azu_js_rc.55.16203 

  21. Stuiver M , Reimer PJ , Reimer RW . 2020 , CALIB 7.1 [WWW program] at http://calib.org, accessed 2020‐6‐7 

  22. Turnbull JC , Mikaloff Fletcher SE , et al. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014 . Atmos Chem Phys . 2017 ; 17 ( 23 ): 14771 ‐ 14784 . https://doi.org/10.5194/acp-17-14771-2017. 

  23. ASTM D6866 standard . ‐ " Standard Test Methods for Determining the Bio‐based Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis " https://www.astm.org/Standards/D6866.htm. Accessed 14 April 2020. 

  24. Bioplastics – Industry standards and labels . September 2019 . https://docs.european-bioplastics.org/publications/fs/EUBP_FS_Standards.pdf. Accessed 14 April 2020. 

  25. Suzuki Y , Akamatsu F , Nakashita R , Korenaga T . A novel method to discriminate between plant‐ and petroleum‐derived plastics by stable carbon isotope analysis . Chem Lett . 2010 ; 39 ( 9 ): 998 ‐ 999 . https://doi.org/10.1246/cl.2010.998 

  26. Berto D , Rampazzo F , Gion C , et al. Elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) as a tool to characterize plastic polymers in a marine environment . In: Gomiero A, ed. Plastics in the Environment. IntechOpen; 2019 . https://doi.org/10.5772/intechopen.81485 

  27. Hooijmans JW , KT . Open Bio. Opening bio‐based markets via standards, labelling and procurement: work package 3, bio‐based content. Deliverable 3.2, Evaluation of applicable techniques for the determination of the bio‐based content . Delft : NEN ; 2015 : 30 . 

  28. Kelly S , Heaton K , Hoogewerff J . Tracing the geographical origin of food: The application of multi‐element and multi‐isotope analysis . Trends Food Sci Technol . 2005 ; 16 : 555 ‐ 567 . 

  29. O'Leary M . Carbon isotopes in photosynthesis . Bioscience . 1988 ; 38 ( 5 ): 328 ‐ 336 . 

  30. Farquhar GD , Ehleringer JR , Hubick KT . Carbon isotope discrimination and photosynthesis . Annu Rev Plant Physiol Plant Mol Biol . 1989 ; 40 ( 1 ): 503 ‐ 537 . https://doi.org/10.1146/annurev.pp.40.060189.002443 

  31. dos Santos Neto EV , Hayes JM . Use of hydrogen and carbon stable isotopes characterizing oils from the Potiguar Basin (onshore), northeastern Brazil . AAPG Bull . 1999 ; 83 ( 3 ): 496 ‐ 518 . 

  32. Sternberg LDSL . Oxygen and hydrogen isotope measurements in plant cellulose analysis . In: Linskens H‐F , Jackson JF , eds. Plant Fibers . Berlin, Heidelberg : Springer ; 1989 : 89 ‐ 99 . 

  33. Schmidt H‐L , Werner RA , Eisenreich W . Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways . Phytochem Rev . 2003 ; 2 ( 1 ): 61 ‐ 85 . https://doi.org/10.1023/B:PHYT.0000004185.92648.ae 

  34. Sessions AL . Factors controlling the deuterium contents of sedimentary hydrocarbons . Org Geochem . 2016 ; 96 : 43 ‐ 64 . 

  35. Yeh H‐W , Epstein S . Hydrogen and carbon isotopes of petroleum and related organic matter . Geochim Cosmochim Acta . 1981 ; 45 ( 5 ): 753 ‐ 762 . https://doi.org/10.1016/0016-7037(81)90046-6 

  36. Taylor E , Carter JF , Hill JC , Morton C , Daeid NN , Sleeman R . Stable isotope ratio mass spectrometry and physical comparison for the forensic examination of grip‐seal plastic bags . Forensic Sci Int . 2008 ; 177 ( 2 ): 214 ‐ 220 . https://doi.org/10.1016/j.forsciint.2008.01.006 

  37. Coplen TB . Guidelines and recommended terms for expression of stable‐isotope‐ratio and gas‐ratio measurement results . Rapid Commun Mass Spectrom . 2011 ; 25 ( 17 ): 2538 ‐ 2560 . 

  38. Reimer PJ , Brown TA , Reimer RW . Discussion: Reporting and calibration of post‐bomb 14 C data . Radiocarbon . 2004 ; 46 ( 3 ): 1299 ‐ 1304 . 

  39. Baisden WT , Prior CA , Chambers D , et al. Radiocarbon sample preparation and data flow at Rafter: Accommodating enhanced throughput and precision . Nucl Instrum Methods B . 2013 ; 294 : 194 ‐ 198 . 

  40. Zondervan A , Hauser T , Kaiser J , Kitchen R , Turnbull JC , West JG . XCAMS: The compact 14 C accelerator mass spectrometer extended for 10 Be and 26 Al at GNS Science, New Zealand . Nucl Instrum Methods B . 2015 ; 361 : 25 ‐ 33 . 

  41. Turnbull JC , Zondervan A , Kaiser J , et al. High‐precision atmospheric 14 CO 2 measurement at the Rafter Radiocarbon Laboratory . Radiocarbon . 2015 ; 57 : 377 ‐ 388 . 

  42. Reimer PJ , Baillie MGL , Bard E , et al. IntCal04 terrestrial radiocarbon age calibration, 0‐26 cal kyr BP . Radiocarbon . 2004 ; 46 ( 3 ): 1029 ‐ 1058 . 

  43. Álvarez‐Chávez CR , Edwards S , Moure‐Eraso R , Geiser K . Sustainability of bio‐based plastics ‐ general comparative analysis and recommendations for improvement. J Clean Prod . 2012 ; 23 : 47 ‐ 56 . https://doi.org/10.1016/j.jclepro.2011.10.003 

  44. Hua Q , Barbetti M , Rakowski A . Atmospheric radiocarbon for the period 1950–2010 . Radiocarbon . 2013 ; 55 ( 4 ): 2059 ‐ 2072 . 

  45. Levin I , Naegler T , Kromer B , et al. Observations and modelling of the global distribution and long‐term trend of atmospheric 14 CO 2 . Tellus B . 2010 ; 62 ( 1 ): 26 ‐ 46 . https://doi.org/10.1111/j.1600-0889.2009.00446.x 

  46. Niu Z , Zhou W , Cheng P , et al. Observations of atmospheric Δ 14 CO 2 at the global and regional background sites in China: Implication for fossil fuel CO 2 inputs . Environ Sci Technol . 2016 ; 50 ( 22 ): 12122 ‐ 12128 . https://doi.org/10.1021/acs.est.6b02814 

  47. Barker M , Rayens W . Partial least squares for discrimination . J Chemometr . 2003 ; 17 ( 3 ): 166 ‐ 173 . https://doi.org/10.1002/cem.785 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로