$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson’s Disease 원문보기

Molecules a journal of synthetic chemistry and natural product chemistry, v.25 no.16, 2020년, pp.3602 -   

Lee, Joo-Eun (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) ,  Sim, Hyuna (jooeunlee@kribb.re.kr (J.-E.L.)) ,  Yoo, Hee Min (hyunasim@kribb.re.kr (H.S.)) ,  Lee, Minhyung (minhyung@kribb.re.kr (M.L.)) ,  Baek, Aruem (areumbaek@kribb.re.kr (A.B.)) ,  Jeon, Young-Joo (jeonyj@kribb.re.kr (Y.-J.J.)) ,  Seo, Kang-Sik (myson@kribb.re.kr (M.-Y.S.)) ,  Son, Mi-Young (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) ,  Yoon, Joo Seog (jooeunlee@kribb.re.kr (J.-E.L.)) ,  Kim, Janghwan (hyunasim@kribb.re.kr (H.S.))

Abstract AI-Helper 아이콘AI-Helper

Parkinson’s disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential thera...

Keyword

참고문헌 (62)

  1. 1. Lees A.J. Hardy J. Revesz T. Parkinson’s disease Lancet 2009 373 2055 2066 10.1016/S0140-6736(09)60492-X 19524782 

  2. 2. Kalia L.V. Lang A.E. Parkinson’s disease Lancet 2015 386 896 912 10.1016/S0140-6736(14)61393-3 25904081 

  3. 3. Singh A. Zhi L. Zhang H. LRRK2 and mitochondria: Recent advances and current views Brain Res. 2019 1702 96 104 10.1016/j.brainres.2018.06.010 29894679 

  4. 4. Mortiboys H. Macdonald R. Payne T. Sassani M. Jenkins T. Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson’s disease FEBS Lett. 2018 592 776 792 10.1002/1873-3468.12920 29178330 

  5. 5. Raza C. Anjum R. Parkinson’s disease: Mechanisms, translational models and management strategies Life Sci. 2019 226 77 90 10.1016/j.lfs.2019.03.057 30980848 

  6. 6. Park J.S. Davis R.L. Sue C.M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives Curr. Neurol. Neurosci. Rep. 2018 18 21 10.1007/s11910-018-0829-3 29616350 

  7. 7. Beal M.F. Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease Ann. N. Y. Acad. Sci. 2006 991 120 131 10.1111/j.1749-6632.2003.tb07470.x 

  8. 8. Blesa J. Phani S. Jackson-Lewis V. Przedborski S. Classic and new animal models of Parkinson’s disease J. Biomed. Biotechnol. 2012 2012 10.1155/2012/845618 

  9. 9. Zeng X.S. Geng W.S. Jia J.J. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment ASN Neuro 2018 10 10.1177/1759091418777438 

  10. 10. Hattori N. Tanaka M. Ozawa T. Mizuno Y. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease Ann. Neurol. 1991 30 563 571 10.1002/ana.410300409 1665052 

  11. 11. Papkovskaia T.D. Chau K.Y. Inesta-vaquera F. Papkovsky D.B. Healy D.G. Nishio K. Staddon J. Duchen M.R. Hardy J. Schapira A.H.V. G2019s leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization Hum. Mol. Genet. 2012 21 4201 4213 10.1093/hmg/dds244 22736029 

  12. 12. Schapira A.H.V. Cooper J.M. Dexter D. Clark J.B. Jenner P. Marsden C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease J. Neurochem. 1990 54 823 827 10.1111/j.1471-4159.1990.tb02325.x 2154550 

  13. 13. Janetzky B. Hauck S. Youdim M.B.H. Riederer P. Jellinger K. Pantucek F. Zochling R. Boissl K.W. Reichmann H. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease Neurosci. Lett. 1994 169 126 128 10.1016/0304-3940(94)90372-7 8047266 

  14. 14. Zheng B. Liao Z. Locascio J.J. Lesniak K.A. Roderick S.S. Watt M.L. Eklund A.C. Zhang-James Y. Kim P.D. Hauser M.A. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease Sci. Transl. Med. 2010 2 52ra73 10.1126/scitranslmed.3001059 

  15. 15. Sai Y. Zou Z. Peng K. Dong Z. The Parkinson’s disease-related genes act in mitochondrial homeostasis Neurosci. Biobehav. Rev. 2012 36 2034 2043 10.1016/j.neubiorev.2012.06.007 22771336 

  16. 16. Cooper O. Seo H. Andrabi S. Guardia-Laguarta C. Graziotto J. Sundberg M. McLean J.R. Carrillo-Reid L. Xie Z. Osborn T. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease Sci. Transl. Med. 2012 4 141ra90 10.1126/scitranslmed.3003985 

  17. 17. Mendivil-Perez M. Velez-Pardo C. Jimenez-Del-Rio M. Neuroprotective Effect of the LRRK2 Kinase Inhibitor PF-06447475 in Human Nerve-Like Differentiated Cells Exposed to Oxidative Stress Stimuli: Implications for Parkinson’s Disease Neurochem. Res. 2016 41 2675 2692 10.1007/s11064-016-1982-1 27394417 

  18. 18. Albarracin S.L. Stab B. Casas Z. Sutachan J.J. Samudio I. Gonzalez J. Gonzalo L. Capani F. Morales L. Barreto G.E. Effects of natural antioxidants in neurodegenerative disease Nutr. Neurosci. 2012 15 1 9 10.1179/1476830511Y.0000000028 22305647 

  19. 19. Schapira A.H.V. Olanow C.W. Greenamyre J.T. Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives Lancet 2014 384 545 555 10.1016/S0140-6736(14)61010-2 24954676 

  20. 20. An L.K. Bu X.Z. Wu H.Q. Guo X.D. Ma L. Gu L.Q. Reaction of tanshinones with biogenic amine metabolites in vitro Tetrahedron 2002 58 10315 10321 10.1016/S0040-4020(02)01414-X 

  21. 21. Su C.Y. Ming Q.L. Rahman K. Han T. Qin L.P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology Chin. J. Nat. Med. 2015 13 163 182 10.1016/S1875-5364(15)30002-9 25835361 

  22. 22. Ke F. Wang Z. Song X. Ma Q. Hu Y. Jiang L. Zhang Y. Liu Y. Zhang Y. Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3k/Akt/NfκB pathways in cholangiocarcinoma cells Drug Des. Devel. Ther. 2017 11 1753 1766 10.2147/DDDT.S132488 28670110 

  23. 23. Wang W. Wang X. Zhang X.S. Liang C.Z. Cryptotanshinone Attenuates Oxidative Stress and Inflammation through the Regulation of Nrf-2 and NF-κB in Mice with Unilateral Ureteral Obstruction Basic Clin. Pharmacol. Toxicol. 2018 123 714 720 10.1111/bcpt.13091 29972887 

  24. 24. Zhou Y. Wang X. Ying W. Wu D. Zhong P. Cryptotanshinone Attenuates Inflammatory Response of Microglial Cells via the Nrf2/HO-1 Pathway Front. Neurosci. 2019 13 852 10.3389/fnins.2019.00852 31496930 

  25. 25. Cao G.Y. Wang X.H. Li K.K. Zhao A.H. Shen L. Yu D.N. Neuroprotective effects of cryptotanshinone and 1,2-dihydrotanshinone I against MPTP induced mouse model of Parkinson’s disease Phytochem. Lett. 2018 26 68 73 10.1016/j.phytol.2018.05.016 

  26. 26. Wood-Kaczmar A. Gandhi S. Wood N.W. Understanding the molecular causes of Parkinson’s disease Trends Mol. Med. 2006 12 521 528 10.1016/j.molmed.2006.09.007 17027339 

  27. 27. Ke M. Chong C.M. Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease World J. Stem Cells 2019 11 634 649 10.4252/wjsc.v11.i9.634 31616540 

  28. 28. Lee M. Sim H. Ahn H. Ha J. Baek A. Jeon Y.J. Son M.Y. Kim J. Direct reprogramming to human induced neuronal progenitors from fibroblasts of familial and sporadic Parkinson’s disease patients Int. J. Stem Cells 2019 12 474 483 10.15283/ijsc19075 31474031 

  29. 29. Mertens J. Marchetto M.C. Bardy C. Gage F.H. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience Nat. Rev. Neurosci. 2016 17 424 437 10.1038/nrn.2016.46 27194476 

  30. 30. Arbab M. Baars S. Geijsen N. Modeling motor neuron disease: The matter of time Trends Neurosci. 2014 37 642 652 10.1016/j.tins.2014.07.008 25156326 

  31. 31. Liu G.H. Qu J. Suzuki K. Nivet E. Li M. Montserrat N. Yi F. Xu X. Ruiz S. Zhang W. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2 Nature 2012 491 603 607 10.1038/nature11557 23075850 

  32. 32. Bentea E. Verbruggen L. Massie A. The Proteasome Inhibition Model of Parkinson’s Disease J. Parkinsons. Dis. 2017 7 31 63 10.3233/JPD-160921 27802243 

  33. 33. Mortiboys H. Johansen K.K. Aasly J.O. Bandmann O. Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2 Neurology 2010 75 2017 2020 10.1212/WNL.0b013e3181ff9685 21115957 

  34. 34. Lee C.S. Han E.S. Park E.S. Bang H. Inhibition of MG132-induced mitochondrial dysfunction and cell death in PC12 cells by 3-morpholinosydnonimine Brain Res. 2005 1036 18 26 10.1016/j.brainres.2004.12.036 15725397 

  35. 35. Zafar K.S. Inayat-Hussain S.H. Ross D. A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132 J. Neurochem. 2007 102 913 921 10.1111/j.1471-4159.2007.04637.x 17504267 

  36. 36. Perez-Alvarez S. Solesio M.E. Manzanares J. Jordan J. Galindo M.F. Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondria-mediated cell death Br. J. Pharmacol. 2009 158 1121 1130 10.1111/j.1476-5381.2009.00388.x 19785649 

  37. 37. Weng M. Xie X. Liu C. Lim K.L. Zhang C.W. Li L. The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson’s Disease Parkinsons. Dis. 2018 2018 10.1155/2018/9163040 

  38. 38. Puspita L. Chung S.Y. Shim J.W. Oxidative stress and cellular pathologies in Parkinson’s disease Mol. Brain 2017 10 1 12 10.1186/s13041-017-0340-9 28052764 

  39. 39. Heo H.Y. Park J.M. Kim C.H. Han B.S. Kim K.S. Seol W. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity Exp. Cell Res. 2010 316 649 656 10.1016/j.yexcr.2009.09.014 19769964 

  40. 40. Subramaniam S.R. Chesselet M.F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease Prog. Neurobiol. 2013 106?107 17 32 10.1016/j.pneurobio.2013.04.004 

  41. 41. Perelman A. Wachtel C. Cohen M. Haupt S. Shapiro H. Tzur A. JC-1: Alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry Cell Death Dis. 2012 3 e430 10.1038/cddis.2012.171 23171850 

  42. 42. Vomund S. Schafer A. Parnham M.J. Brune B. Von Knethen A. Nrf2, the master regulator of anti-oxidative responses Int. J. Mol. Sci. 2017 18 2772 10.3390/ijms18122772 29261130 

  43. 43. Ren J. Yuan L. Wang W. Zhang M. Wang Q. Li S. Zhang L. Hu K. Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson’s disease model by activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway Toxicol. Appl. Pharmacol. 2019 378 114617 10.1016/j.taap.2019.114617 31176653 

  44. 44. Wei P.C. Lee-Chen G.J. Chen C.M. Wu Y.R. Chen Y.J. Lin J.L. Lo Y.S. Yao C.F. Chang K.H. Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson’s Disease Cell Models Oxid. Med. Cell. Longev. 2019 2019 5074367 10.1155/2019/5074367 31781339 

  45. 45. Ryu J. Zhang R. Hong B.H. Yang E.J. Kang K.A. Choi M. Kim K.C. Noh S.J. Kim H.S. Lee N.H. Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson’s Disease by Enhancing Nrf2 Activity PLoS ONE 2013 8 e71178 10.1371/journal.pone.0071178 23976995 

  46. 46. Tsou Y.H. Shih C.T. Ching C.H. Huang J.Y. Jen C.J. Yu L. Kuo Y.M. Wu F.S. Chuang J.I. Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity Exp. Neurol. 2015 263 50 62 10.1016/j.expneurol.2014.09.021 25286336 

  47. 47. Tufekci K.U. Civi Bayin E. Genc S. Genc K. The Nrf2/ARE pathway: A promising target to counteract mitochondrial dysfunction in Parkinson’s disease Parkinsons. Dis. 2011 2011 314082 10.4061/2011/314082 21403858 

  48. 48. Niedzielska E. Smaga I. Gawlik M. Moniczewski A. Stankowicz P. Pera J. Filip M. Oxidative Stress in Neurodegenerative Diseases Mol. Neurobiol. 2016 53 4094 4125 10.1007/s12035-015-9337-5 26198567 

  49. 49. Trist B.G. Hare D.J. Double K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease Aging Cell 2019 18 e13031 10.1111/acel.13031 31432604 

  50. 50. Son H.J. Choi J.H. Lee J.A. Kim D.J. Shin K.J. Hwang O. Induction of NQO1 and Neuroprotection by a Novel Compound KMS04014 in Parkinson’s Disease Models J. Mol. Neurosci. 2015 56 263 272 10.1007/s12031-015-0516-7 25702135 

  51. 51. Ye Q. Chen C. Si E. Cai Y. Wang J. Huang W. Li D. Wang Y. Chen X. Mitochondrial effects of PGC-1alpha silencing in MPP+ treated human SH-SY5Y neuroblastoma cells Front. Mol. Neurosci. 2017 10 164 10.3389/fnmol.2017.00164 28611589 

  52. 52. Mudo G. Makela J. Di Liberto V. Tselykh T.V. Olivieri M. Piepponen P. Eriksson O. Malkia A. Bonomo A. Kairisalo M. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinsons disease Cell. Mol. Life Sci. 2012 69 1153 1165 10.1007/s00018-011-0850-z 21984601 

  53. 53. Ferretta A. Gaballo A. Tanzarella P. Piccoli C. Capitanio N. Nico B. Annese T. Di Paola M. Dell’Aquila C. De Mari M. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 902 915 10.1016/j.bbadis.2014.02.010 24582596 

  54. 54. Makela J. Tselykh T.V. Kukkonen J.P. Eriksson O. Korhonen L.T. Lindholm D. Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons Neuropharmacology 2016 102 266 275 10.1016/j.neuropharm.2015.11.020 26631533 

  55. 55. Ye Q. Huang W. Li D. Si E. Wang J. Wang Y. Chen C. Chen X. Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons Mol. Neurobiol. 2016 53 3756 3770 10.1007/s12035-015-9299-7 26141122 

  56. 56. Xicoy H. Wieringa B. Martens G.J.M. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review Mol. Neurodegener. 2017 12 10 10.1186/s13024-017-0149-0 28118852 

  57. 57. Jang W. Kim H.J. Li H. Jo K.D. Lee M.K. Yang H.O. The Neuroprotective Effect of Erythropoietin on Rotenone-Induced Neurotoxicity in SH-SY5Y Cells Through the Induction of Autophagy Mol. Neurobiol. 2016 53 3812 3821 10.1007/s12035-015-9316-x 26156288 

  58. 58. Torrent R. De Angelis Rigotti F. Dell’Era P. Memo M. Raya A. Consiglio A. Using iPS Cells toward the Understanding of Parkinson’s Disease J. Clin. Med. 2015 4 548 566 10.3390/jcm4040548 26239346 

  59. 59. Mertens J. Paquola A.C.M. Ku M. Hatch E. Bohnke L. Ladjevardi S. McGrath S. Campbell B. Lee H. Herdy J.R. Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects Cell Stem Cell 2015 17 705 718 10.1016/j.stem.2015.09.001 26456686 

  60. 60. Kim Y. Zheng X. Ansari Z. Bunnell M.C. Herdy J.R. Traxler L. Lee H. Paquola A.C.M. Blithikioti C. Ku M. Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile Cell Rep. 2018 23 2550 2558 10.1016/j.celrep.2018.04.105 29847787 

  61. 61. Huh C.J. Zhang B. Victor M.B. Dahiya S. Batista L.F.Z. Horvath S. Yoo A.S. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts eLife 2016 5 e18648 10.7554/eLife.18648 27644593 

  62. 62. Bohnke L. Traxler L. Herdy J.R. Mertens J. Human neurons to model aging: A dish best served old Drug Discov Today Dis Model. 2018 27 43 49 10.1016/j.ddmod.2019.01.001 31745399 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로