최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Molecules a journal of synthetic chemistry and natural product chemistry, v.25 no.16, 2020년, pp.3602 -
Lee, Joo-Eun (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) , Sim, Hyuna (jooeunlee@kribb.re.kr (J.-E.L.)) , Yoo, Hee Min (hyunasim@kribb.re.kr (H.S.)) , Lee, Minhyung (minhyung@kribb.re.kr (M.L.)) , Baek, Aruem (areumbaek@kribb.re.kr (A.B.)) , Jeon, Young-Joo (jeonyj@kribb.re.kr (Y.-J.J.)) , Seo, Kang-Sik (myson@kribb.re.kr (M.-Y.S.)) , Son, Mi-Young (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) , Yoon, Joo Seog (jooeunlee@kribb.re.kr (J.-E.L.)) , Kim, Janghwan (hyunasim@kribb.re.kr (H.S.))
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential thera...
1. Lees A.J. Hardy J. Revesz T. Parkinson’s disease Lancet 2009 373 2055 2066 10.1016/S0140-6736(09)60492-X 19524782
2. Kalia L.V. Lang A.E. Parkinson’s disease Lancet 2015 386 896 912 10.1016/S0140-6736(14)61393-3 25904081
3. Singh A. Zhi L. Zhang H. LRRK2 and mitochondria: Recent advances and current views Brain Res. 2019 1702 96 104 10.1016/j.brainres.2018.06.010 29894679
4. Mortiboys H. Macdonald R. Payne T. Sassani M. Jenkins T. Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson’s disease FEBS Lett. 2018 592 776 792 10.1002/1873-3468.12920 29178330
5. Raza C. Anjum R. Parkinson’s disease: Mechanisms, translational models and management strategies Life Sci. 2019 226 77 90 10.1016/j.lfs.2019.03.057 30980848
6. Park J.S. Davis R.L. Sue C.M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives Curr. Neurol. Neurosci. Rep. 2018 18 21 10.1007/s11910-018-0829-3 29616350
7. Beal M.F. Mitochondria, Oxidative Damage, and Inflammation in Parkinson’s Disease Ann. N. Y. Acad. Sci. 2006 991 120 131 10.1111/j.1749-6632.2003.tb07470.x
8. Blesa J. Phani S. Jackson-Lewis V. Przedborski S. Classic and new animal models of Parkinson’s disease J. Biomed. Biotechnol. 2012 2012 10.1155/2012/845618
9. Zeng X.S. Geng W.S. Jia J.J. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment ASN Neuro 2018 10 10.1177/1759091418777438
10. Hattori N. Tanaka M. Ozawa T. Mizuno Y. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease Ann. Neurol. 1991 30 563 571 10.1002/ana.410300409 1665052
11. Papkovskaia T.D. Chau K.Y. Inesta-vaquera F. Papkovsky D.B. Healy D.G. Nishio K. Staddon J. Duchen M.R. Hardy J. Schapira A.H.V. G2019s leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization Hum. Mol. Genet. 2012 21 4201 4213 10.1093/hmg/dds244 22736029
12. Schapira A.H.V. Cooper J.M. Dexter D. Clark J.B. Jenner P. Marsden C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease J. Neurochem. 1990 54 823 827 10.1111/j.1471-4159.1990.tb02325.x 2154550
13. Janetzky B. Hauck S. Youdim M.B.H. Riederer P. Jellinger K. Pantucek F. Zochling R. Boissl K.W. Reichmann H. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease Neurosci. Lett. 1994 169 126 128 10.1016/0304-3940(94)90372-7 8047266
14. Zheng B. Liao Z. Locascio J.J. Lesniak K.A. Roderick S.S. Watt M.L. Eklund A.C. Zhang-James Y. Kim P.D. Hauser M.A. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease Sci. Transl. Med. 2010 2 52ra73 10.1126/scitranslmed.3001059
15. Sai Y. Zou Z. Peng K. Dong Z. The Parkinson’s disease-related genes act in mitochondrial homeostasis Neurosci. Biobehav. Rev. 2012 36 2034 2043 10.1016/j.neubiorev.2012.06.007 22771336
16. Cooper O. Seo H. Andrabi S. Guardia-Laguarta C. Graziotto J. Sundberg M. McLean J.R. Carrillo-Reid L. Xie Z. Osborn T. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease Sci. Transl. Med. 2012 4 141ra90 10.1126/scitranslmed.3003985
17. Mendivil-Perez M. Velez-Pardo C. Jimenez-Del-Rio M. Neuroprotective Effect of the LRRK2 Kinase Inhibitor PF-06447475 in Human Nerve-Like Differentiated Cells Exposed to Oxidative Stress Stimuli: Implications for Parkinson’s Disease Neurochem. Res. 2016 41 2675 2692 10.1007/s11064-016-1982-1 27394417
18. Albarracin S.L. Stab B. Casas Z. Sutachan J.J. Samudio I. Gonzalez J. Gonzalo L. Capani F. Morales L. Barreto G.E. Effects of natural antioxidants in neurodegenerative disease Nutr. Neurosci. 2012 15 1 9 10.1179/1476830511Y.0000000028 22305647
19. Schapira A.H.V. Olanow C.W. Greenamyre J.T. Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives Lancet 2014 384 545 555 10.1016/S0140-6736(14)61010-2 24954676
20. An L.K. Bu X.Z. Wu H.Q. Guo X.D. Ma L. Gu L.Q. Reaction of tanshinones with biogenic amine metabolites in vitro Tetrahedron 2002 58 10315 10321 10.1016/S0040-4020(02)01414-X
21. Su C.Y. Ming Q.L. Rahman K. Han T. Qin L.P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology Chin. J. Nat. Med. 2015 13 163 182 10.1016/S1875-5364(15)30002-9 25835361
22. Ke F. Wang Z. Song X. Ma Q. Hu Y. Jiang L. Zhang Y. Liu Y. Zhang Y. Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3k/Akt/NfκB pathways in cholangiocarcinoma cells Drug Des. Devel. Ther. 2017 11 1753 1766 10.2147/DDDT.S132488 28670110
23. Wang W. Wang X. Zhang X.S. Liang C.Z. Cryptotanshinone Attenuates Oxidative Stress and Inflammation through the Regulation of Nrf-2 and NF-κB in Mice with Unilateral Ureteral Obstruction Basic Clin. Pharmacol. Toxicol. 2018 123 714 720 10.1111/bcpt.13091 29972887
24. Zhou Y. Wang X. Ying W. Wu D. Zhong P. Cryptotanshinone Attenuates Inflammatory Response of Microglial Cells via the Nrf2/HO-1 Pathway Front. Neurosci. 2019 13 852 10.3389/fnins.2019.00852 31496930
25. Cao G.Y. Wang X.H. Li K.K. Zhao A.H. Shen L. Yu D.N. Neuroprotective effects of cryptotanshinone and 1,2-dihydrotanshinone I against MPTP induced mouse model of Parkinson’s disease Phytochem. Lett. 2018 26 68 73 10.1016/j.phytol.2018.05.016
26. Wood-Kaczmar A. Gandhi S. Wood N.W. Understanding the molecular causes of Parkinson’s disease Trends Mol. Med. 2006 12 521 528 10.1016/j.molmed.2006.09.007 17027339
27. Ke M. Chong C.M. Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease World J. Stem Cells 2019 11 634 649 10.4252/wjsc.v11.i9.634 31616540
28. Lee M. Sim H. Ahn H. Ha J. Baek A. Jeon Y.J. Son M.Y. Kim J. Direct reprogramming to human induced neuronal progenitors from fibroblasts of familial and sporadic Parkinson’s disease patients Int. J. Stem Cells 2019 12 474 483 10.15283/ijsc19075 31474031
29. Mertens J. Marchetto M.C. Bardy C. Gage F.H. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience Nat. Rev. Neurosci. 2016 17 424 437 10.1038/nrn.2016.46 27194476
30. Arbab M. Baars S. Geijsen N. Modeling motor neuron disease: The matter of time Trends Neurosci. 2014 37 642 652 10.1016/j.tins.2014.07.008 25156326
31. Liu G.H. Qu J. Suzuki K. Nivet E. Li M. Montserrat N. Yi F. Xu X. Ruiz S. Zhang W. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2 Nature 2012 491 603 607 10.1038/nature11557 23075850
32. Bentea E. Verbruggen L. Massie A. The Proteasome Inhibition Model of Parkinson’s Disease J. Parkinsons. Dis. 2017 7 31 63 10.3233/JPD-160921 27802243
33. Mortiboys H. Johansen K.K. Aasly J.O. Bandmann O. Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2 Neurology 2010 75 2017 2020 10.1212/WNL.0b013e3181ff9685 21115957
34. Lee C.S. Han E.S. Park E.S. Bang H. Inhibition of MG132-induced mitochondrial dysfunction and cell death in PC12 cells by 3-morpholinosydnonimine Brain Res. 2005 1036 18 26 10.1016/j.brainres.2004.12.036 15725397
35. Zafar K.S. Inayat-Hussain S.H. Ross D. A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132 J. Neurochem. 2007 102 913 921 10.1111/j.1471-4159.2007.04637.x 17504267
36. Perez-Alvarez S. Solesio M.E. Manzanares J. Jordan J. Galindo M.F. Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondria-mediated cell death Br. J. Pharmacol. 2009 158 1121 1130 10.1111/j.1476-5381.2009.00388.x 19785649
37. Weng M. Xie X. Liu C. Lim K.L. Zhang C.W. Li L. The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson’s Disease Parkinsons. Dis. 2018 2018 10.1155/2018/9163040
38. Puspita L. Chung S.Y. Shim J.W. Oxidative stress and cellular pathologies in Parkinson’s disease Mol. Brain 2017 10 1 12 10.1186/s13041-017-0340-9 28052764
39. Heo H.Y. Park J.M. Kim C.H. Han B.S. Kim K.S. Seol W. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity Exp. Cell Res. 2010 316 649 656 10.1016/j.yexcr.2009.09.014 19769964
40. Subramaniam S.R. Chesselet M.F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease Prog. Neurobiol. 2013 106?107 17 32 10.1016/j.pneurobio.2013.04.004
41. Perelman A. Wachtel C. Cohen M. Haupt S. Shapiro H. Tzur A. JC-1: Alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry Cell Death Dis. 2012 3 e430 10.1038/cddis.2012.171 23171850
42. Vomund S. Schafer A. Parnham M.J. Brune B. Von Knethen A. Nrf2, the master regulator of anti-oxidative responses Int. J. Mol. Sci. 2017 18 2772 10.3390/ijms18122772 29261130
43. Ren J. Yuan L. Wang W. Zhang M. Wang Q. Li S. Zhang L. Hu K. Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson’s disease model by activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway Toxicol. Appl. Pharmacol. 2019 378 114617 10.1016/j.taap.2019.114617 31176653
44. Wei P.C. Lee-Chen G.J. Chen C.M. Wu Y.R. Chen Y.J. Lin J.L. Lo Y.S. Yao C.F. Chang K.H. Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson’s Disease Cell Models Oxid. Med. Cell. Longev. 2019 2019 5074367 10.1155/2019/5074367 31781339
45. Ryu J. Zhang R. Hong B.H. Yang E.J. Kang K.A. Choi M. Kim K.C. Noh S.J. Kim H.S. Lee N.H. Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson’s Disease by Enhancing Nrf2 Activity PLoS ONE 2013 8 e71178 10.1371/journal.pone.0071178 23976995
46. Tsou Y.H. Shih C.T. Ching C.H. Huang J.Y. Jen C.J. Yu L. Kuo Y.M. Wu F.S. Chuang J.I. Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity Exp. Neurol. 2015 263 50 62 10.1016/j.expneurol.2014.09.021 25286336
47. Tufekci K.U. Civi Bayin E. Genc S. Genc K. The Nrf2/ARE pathway: A promising target to counteract mitochondrial dysfunction in Parkinson’s disease Parkinsons. Dis. 2011 2011 314082 10.4061/2011/314082 21403858
48. Niedzielska E. Smaga I. Gawlik M. Moniczewski A. Stankowicz P. Pera J. Filip M. Oxidative Stress in Neurodegenerative Diseases Mol. Neurobiol. 2016 53 4094 4125 10.1007/s12035-015-9337-5 26198567
49. Trist B.G. Hare D.J. Double K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease Aging Cell 2019 18 e13031 10.1111/acel.13031 31432604
50. Son H.J. Choi J.H. Lee J.A. Kim D.J. Shin K.J. Hwang O. Induction of NQO1 and Neuroprotection by a Novel Compound KMS04014 in Parkinson’s Disease Models J. Mol. Neurosci. 2015 56 263 272 10.1007/s12031-015-0516-7 25702135
51. Ye Q. Chen C. Si E. Cai Y. Wang J. Huang W. Li D. Wang Y. Chen X. Mitochondrial effects of PGC-1alpha silencing in MPP+ treated human SH-SY5Y neuroblastoma cells Front. Mol. Neurosci. 2017 10 164 10.3389/fnmol.2017.00164 28611589
52. Mudo G. Makela J. Di Liberto V. Tselykh T.V. Olivieri M. Piepponen P. Eriksson O. Malkia A. Bonomo A. Kairisalo M. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinsons disease Cell. Mol. Life Sci. 2012 69 1153 1165 10.1007/s00018-011-0850-z 21984601
53. Ferretta A. Gaballo A. Tanzarella P. Piccoli C. Capitanio N. Nico B. Annese T. Di Paola M. Dell’Aquila C. De Mari M. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 902 915 10.1016/j.bbadis.2014.02.010 24582596
54. Makela J. Tselykh T.V. Kukkonen J.P. Eriksson O. Korhonen L.T. Lindholm D. Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons Neuropharmacology 2016 102 266 275 10.1016/j.neuropharm.2015.11.020 26631533
55. Ye Q. Huang W. Li D. Si E. Wang J. Wang Y. Chen C. Chen X. Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons Mol. Neurobiol. 2016 53 3756 3770 10.1007/s12035-015-9299-7 26141122
56. Xicoy H. Wieringa B. Martens G.J.M. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review Mol. Neurodegener. 2017 12 10 10.1186/s13024-017-0149-0 28118852
57. Jang W. Kim H.J. Li H. Jo K.D. Lee M.K. Yang H.O. The Neuroprotective Effect of Erythropoietin on Rotenone-Induced Neurotoxicity in SH-SY5Y Cells Through the Induction of Autophagy Mol. Neurobiol. 2016 53 3812 3821 10.1007/s12035-015-9316-x 26156288
58. Torrent R. De Angelis Rigotti F. Dell’Era P. Memo M. Raya A. Consiglio A. Using iPS Cells toward the Understanding of Parkinson’s Disease J. Clin. Med. 2015 4 548 566 10.3390/jcm4040548 26239346
59. Mertens J. Paquola A.C.M. Ku M. Hatch E. Bohnke L. Ladjevardi S. McGrath S. Campbell B. Lee H. Herdy J.R. Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects Cell Stem Cell 2015 17 705 718 10.1016/j.stem.2015.09.001 26456686
60. Kim Y. Zheng X. Ansari Z. Bunnell M.C. Herdy J.R. Traxler L. Lee H. Paquola A.C.M. Blithikioti C. Ku M. Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile Cell Rep. 2018 23 2550 2558 10.1016/j.celrep.2018.04.105 29847787
61. Huh C.J. Zhang B. Victor M.B. Dahiya S. Batista L.F.Z. Horvath S. Yoo A.S. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts eLife 2016 5 e18648 10.7554/eLife.18648 27644593
62. Bohnke L. Traxler L. Herdy J.R. Mertens J. Human neurons to model aging: A dish best served old Drug Discov Today Dis Model. 2018 27 43 49 10.1016/j.ddmod.2019.01.001 31745399
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.