$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Spatial mapping of short-term solar radiation prediction incorporating geostationary satellite images coupled with deep convolutional LSTM networks for South Korea 원문보기

Environmental research letters : ERL, v.15 no.9, 2020년, pp.094025 -   

Yeom, Jong-Min ,  Deo, Ravinesh C ,  Adamowski, Jan F ,  Park, Seonyoung ,  Lee, Chang-Suk

Abstract AI-Helper 아이콘AI-Helper

AbstractA practical approach to continuously monitor and provide real-time solar energy prediction can help support reliable renewable energy supply and relevant energy security systems. In this study on the Korean Peninsula, contemporaneous solar radiation images obtained from the Communication, Oc...

참고문헌 (59)

  1. Appl. Energy Voyant 10.1016/j.renene.2016.12.095 105 569 2017 Machine learning methods for solar radiation forecasting: a review 

  2. Appl. Energy Liu 10.1016/j.apenergy.2019.113596 253 2019 Ensemble spatiotemporal forecasting of solar irradiance using variational Bayesian convolutional gate recurrent unit network 

  3. Energy Fouilloy 10.1016/j.energy.2018.09.116 165 620 2018 Solar irradiance prediction with machine learning: forecasting models selection method depending on weather variability 

  4. Appl. Energy Lou 10.1016/j.apenergy.2016.08.093 181 367 2016 Prediction of diffuse solar irradiance using machine learning and multivariable regression 

  5. Sol. Energy Martín 10.1016/j.solener.2010.07.002 84 1772 2010 Prediction of global solar irradiance based on time series analysis: application to solar thermal power plants energy production planning 

  6. Sol. Energy Perez 10.1016/j.solener.2013.05.005 94 305 2013 Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe 

  7. Bull. Am. Meteor. Soc. Sun 10.1175/BAMS-D-11-00263.1 409 2014 Use of NWP for nowcasting convective precipitation: recent progress and challenges 

  8. Prog. Energy Combust. Sci. Inman 10.1016/j.pecs.2013.06.002 39 535 2013 Solar forecasting methods for renewable energy integration 

  9. Appl. Energy Deo 10.1016/j.apenergy.2016.01.130 168 568 2016 A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset 

  10. Appl. Energy Salcedo-Sanz 10.1016/j.apenergy.2017.10.076 209 79 2018 An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia 

  11. Renew. Sustain. Energy Rev. Ghimire 10.1016/j.rser.2019.109247 113 2019 Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction 

  12. Sol. Energy Behrang 10.1016/j.solener.2010.05.009 84 1468 2010 The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data 

  13. Renew. Energy Huang 10.1016/j.renene.2014.07.015 72 195 2014 An analytical comparison of four approaches to modelling the daily variability of solar irradiance using meteorological records 

  14. Sensors Yeom 10.3390/s19092082 19 2082 2019 Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea 

  15. Renew. Sustain. Energy Rev. Wang 10.1016/j.rser.2016.04.024 61 384 2016 Solar radiation prediction using different techniques: model evaluation and comparison 

  16. Renew. Energy Zou 10.1016/j.renene.2017.01.042 106 343 2017 Prediction and comparison of solar radiation using improved empirical models and adaptive neuro-fuzzy inference systems 

  17. Appl. Energy Fadare 10.1016/j.apenergy.2008.12.005 86 1410 2009 Modelling of solar energy potential in Nigeria using an artificial neural network model 

  18. Bull. Math. Biophys. McCulloch 10.1007/BF02478259 5 115 1943 A logical calculus of the ideas immanent in nervous activity 

  19. Renew. Sustain. Energy Rev. Keshtegar 10.1016/j.rser.2017.07.054 81 330 2018 Comparison of four heuristic regression techniques in solar radiation modeling: kriging method vs RSM, MARS and M5 model tree 

  20. Renew. Sustain. Energy Rev. Qin 10.1016/j.rser.2017.08.037 81 579 2018 Comparison of deterministic and data-driven models for solar radiation estimation in China 

  21. Renew. Sustain. Energy Rev. Deo 10.1016/j.rser.2017.01.114 72 828 2017 Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland 

  22. J. Climate. Qin 10.1175/JCLI-D-18-0590.1 32 2761 2019 First effort at constructing a high-density photosynthetically active radiation dataset during 1961-2014 in China 

  23. Remote Sens. Ndikumana 10.3390/rs10081217 10 1217 2018 Deep recurrent neural network for agricultural classification using multi temporal SAR Sentinel-1 for Camargue, France 

  24. Remote Sens. Wang 10.3390/rs10071068 10 1068 2018 A fast dense spectral-spatial convolution network framework for hyperspectral images classification 

  25. Atmos. Environ. Yu 10.1016/j.atmosenv.2019.117198 223 2020 Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001-2015 

  26. Int. J. Control. Chen 10.1080/00207179208934317 56 319 1992 Neural networks for nonlinear dynamic system modeling and identification 

  27. Neural. Comput. LeRoux 10.1162/neco.2010.08-09-1081 22 2192 2010 Deep belief networks are compact universal approximators 

  28. Ciresan 10.1109/CVPR.2012.6248110 p 3642 2012 Multi-column deep neural networks for image classification 

  29. IEEE Trans. Pattern Anal. Machine Intel. Kruger 10.1109/TPAMI.2012.272 35 1847 2013 Deep hierarchies in the primate visual cortex: what can we learn for computer vision? 

  30. Sci. Total Environ. Qi 10.1016/j.scitotenv.2019.01.333 664 1 2019 A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory 

  31. IEEE Geosci. Remote Sens. Mag. Zhu 10.1109/MGRS.2017.2762307 5 8 2017 Deep learning in remote sensing: a comprehensive review and list of resources 

  32. Energies Ghimire 10.3390/en12122407 12 1 2019 Deep learning neural networks trained with MODIS satellite-derived predictors for long-term global solar radiation prediction 

  33. Appl. Energy Ghimire 10.1016/j.apenergy.2019.113541 253 2019 Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms 

  34. J. Clean. Prod. Ghimire 10.1016/j.jclepro.2019.01.158 216 288 2019 Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of Queensland Australia 

  35. Neural. Comput. Hinton 10.1162/neco.2006.18.7.1527 18 1527 2006 The YW. A fast learning algorithm for deep belief nets 

  36. Hinton 2012 Improving neural networks by preventing co-adaptation of feature detectors 

  37. Nair p 807 2010 Rectified linear units improve restricted Boltzmann Machines 

  38. Hydrol. Earth Syst. Sci. Peel 10.5555/3104322.3104425 11 1633 2007 Updated world map of the Köppen-Geiger climate classification 

  39. 2009 Development of meteorological data processing system for communication, ocean and meteorological satellite (ATBD) 

  40. Korean J. Remote Sens. Kim 10.7780/kjrs.2016.32.6.16 32 733 2016 The sensitivity analysis to observed frequency of daily composite insolation based on COMS 

  41. J. Oceanogr. Kawai 10.1007/s10872-005-0021-7 61 79 2005 Validation and improvement of satellite-derived surface solar radiation over the northwestern Pacific Ocean 

  42. J. Oceanogr. Kawamura 10.1007/BF02742448 54 457 1998 Estimation of insolation over Pacific Ocean off the Sanriku Coast 

  43. Asia-Pacific J. Atmos. Sci. Yeom 10.1007/s13143-012-0011-9 48 115 2012 Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data 

  44. J. Sens. Yeom 10.1155/2016/4834579 2016 1 2016 Solar radiation received by slopes using COMS imagery, a physically-based radiation model, and GLOBE 

  45. IEEE Trans. Neural Network. Bengio 10.1109/72.279181 5 157 1994 Learning long-term dependencies with gradient descent is difficult 

  46. Hochreiter 237 2001 

  47. ISPRS Annal. Photogram. Remote Sens. Spatial Inf. Sci. Fan 10.5194/isprs-annals-IV-4-W2-15-2017 4 15 2017 A spatiotemporal prediction framework for air pollution based on deep RNN 

  48. ISPRS Annal. Photogram. Remote Sens. Spatial Inf. Sci. Gong 10.5194/isprs-annals-IV-4-W2-153-2017 4 153 2017 Spatio-temporal simulation and analysis of regional ecological security based on LSTM 

  49. Shi 2015 Convolutional LSTM network: a machine learning approach for precipitation nowcasting 

  50. Paparaju 2018 Video frame prediction with Keras 

  51. Pearce 2017 CIKM AnalytiCup 2017 challenge entry 

  52. Ioffe 2015 Batch normalization: accelerating deep network training by reducing internal covariate shift 

  53. He 1026 2015 Delving deep into rectifiers: surpassing human-level performance on ImageNet classification 

  54. Glorot p 249 2010 Understanding the difficulty of training deep feedforward neural networks 

  55. Comput. Geosci. Yeom 10.1016/j.cageo.2009.08.012 36 590 2010 Improved estimation of surface solar insolation using a neural network and MTSAT-1R data 

  56. Mach. Learn. Breiman 10.1023/A:1010933404324 45 5 2001 Random forests 

  57. Atmos. Chem. Phys. Park 10.5194/acp-19-1097-2019 19 1097 2019 Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea 

  58. Cook 2016 

  59. Renew. Sustain. Energy Rev. Qin 10.1016/j.rser.2017.08.037 81 579 2018 Comparison of deterministic and data-driven models for solar radiation estimation in China 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로