$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Ultra-wide low-frequency band gap in a tapered phononic beam

Journal of sound and vibration, v.499, 2021년, pp.115977 -   

Park, Seongmin (Corresponding author.) ,  Jeon, Wonju

Abstract AI-Helper 아이콘AI-Helper

Abstract We propose a tapered phononic beam with a broad low-frequency band gap for flexural waves. A unit cell of the phononic beam consists of two identical uniform parts and a thickness- and width-varying part sandwiched between them. Thickness and width profiles and uniform beam length are cont...

Keyword

참고문헌 (42)

  1. Brillouin 1946 Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices 

  2. J. Sound Vib. Sigalas 158 2 377 1992 10.1016/0022-460X(92)90059-7 Elastic and acoustic wave band structure 

  3. Phys. Rev. Lett. Kushwaha 71 13 2022 1993 10.1103/PhysRevLett.71.2022 Acoustic band structure of periodic elastic composites 

  4. J. Sound Vib. Mead 190 3 495 1996 10.1006/jsvi.1996.0076 Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995 

  5. J. Sound Vib. Yang 327 1-2 26 2009 10.1016/j.jsv.2009.05.017 Frequency analysis of a heterogeneous perforated panel using a super-element formulation 

  6. J. Sound Vib. Thota 430 93 2018 10.1016/j.jsv.2018.05.031 Tunable wave guiding in origami phononic structures 

  7. J. Sound Vib. Chen 410 102 2017 10.1016/j.jsv.2017.08.015 Topological design of phononic crystals for unidirectional acoustic transmission 

  8. Appl. Phys. Lett. Khelif 84 4400 2004 10.1063/1.1757642 Guiding and bending of acoustic waves in highly confined phononic crystal waveguides 

  9. J. Appl. Phys. Wen 97 2005 10.1063/1.1922068 Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure 

  10. J. Sound Vib. Pelat 446 249 2019 10.1016/j.jsv.2019.01.029 On the control of the first bragg band gap in periodic continuously corrugated beam for flexural vibration 

  11. Phys. Rev. B Yu 73 2006 10.1103/PhysRevB.73.064301 Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom 

  12. J. Appl. Phys. Yu 100 2006 10.1063/1.2400803 Flexural vibration band gaps in Timoshenko beams with locally resonant structures 

  13. J. Sound Vib. Xiao 332 867 2013 10.1016/j.jsv.2012.09.035 Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms 

  14. Appl. Phys. Lett. Wang 94 2009 A tunable acoustic filter made by periodical structured materials 

  15. Sci. Rep. Lee 10 8070 2020 10.1038/s41598-020-64234-7 Hierarchical phononic crystals for filtering multiple target frequencies of ultrasound 

  16. J. Sound Vib. Lee 355 86 2015 10.1016/j.jsv.2015.06.006 Realization of high-performance bandpass filter by impedance-mirroring 

  17. J. Sound Vib. Červenka 383 76 2016 10.1016/j.jsv.2016.06.045 Acoustic bandpass filters employing shaped resonators 

  18. J. Sound Vib. Zhu 333 2759 2014 10.1016/j.jsv.2014.01.009 A chiral elastic metamaterial beam for broadband vibration suppression 

  19. Phys, Lett. A Xiao 376 1384 2012 10.1016/j.physleta.2012.02.059 Broadband locally resonant beams containing multiple periodic arrays of attached resonators 

  20. J. Appl. Phys. Zhou 121 4 2017 10.1063/1.4974299 Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams 

  21. Nonlinear Dyn Zhou 96 1 647 2019 10.1007/s11071-019-04812-1 A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams 

  22. J. Acoust. Soc. Am. Tang 142 2802 2017 10.1121/1.5009582 Ultrawide band gaps in beams with double-leaf acoustic black hole indentations 

  23. J. Appl. Phys. Tang 121 2017 10.1063/1.4983459 Broadband locally resonant band gaps in phononic beam structures with embedded acoustic black holes 

  24. Appl. Phys. Express Zhang 12 2019 10.7567/1882-0786/ab2a6d An ultralight phononic beam with a broad low-frequency band gap using the complex lattice of acoustic black holes 

  25. J. Sound Vib. Acar 332 6389 2013 10.1016/j.jsv.2013.06.022 Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures 

  26. Phys. Rev. B Yilmaz 76 2007 10.1103/PhysRevB.76.054309 Phononic band gaps induced by inertial amplification in periodic media 

  27. J. Sound Vib. Yuksel 355 232 2015 10.1016/j.jsv.2015.06.016 Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms 

  28. Sci. Rep. Oh 6 33410 2016 10.1038/srep33410 Quasi-static stop band with flexural metamaterial having zero rotational stiffness 

  29. J. Sound Vib. Sharma 364 133 2016 10.1016/j.jsv.2015.11.019 Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators 

  30. Extreme Mech. Lett. Krushynska 12 30 2017 10.1016/j.eml.2016.10.004 Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials 

  31. Phys. Rev. Appl. Oh 8 2017 10.1103/PhysRevApplied.8.054034 Elastic Metamaterial insulator for broadband low-frequency flexural vibration shielding 

  32. Nat. Comm. Fang 8 1288 2017 10.1038/s41467-017-00671-9 Ultralow and ultra-broad-band nonlinear acoustic metamaterials 

  33. Proc. Natl. Acad. Sci. Matlack 113 8386 2016 10.1073/pnas.1600171113 Composite 3D-printed metastructures for low-frequency and broadband vibration absorption 

  34. Appl. Phys. Lett. D'Alessandro 111 2017 10.1063/1.4995554 Mechanical low-frequency filter via modes separation in 3D periodic structures 

  35. J. Sound Vib. Orta 439 329 2019 10.1016/j.jsv.2018.10.014 Inertial amplification induced phononic band gaps generated by a compliant axial to rotary motion conversion mechanism 

  36. J. Sound Vib. Gao 444 108 2019 10.1016/j.jsv.2018.12.022 Single-phase metamaterial plates for broadband vibration suppression at low frequencies 

  37. Appl. Phys. Lett. Chen 105 2014 10.1063/1.4902129 Periodic co-continuous acoustic metamaterials with overlapping locally resonant and bragg band gaps 

  38. Phys. Rev. B Lin 79 2009 10.1103/PhysRevB.79.094302 Gradient-index phononic crystals 

  39. J. Sound Vib. Liu 330 2356 2011 10.1016/j.jsv.2010.12.014 Wave propagation characterization and design of two-dimensional elastic chiral metacomposite 

  40. Sov. Phys. Acoust. Mironov 34 318 1988 Propagation of a flexural wave in a plate whose thickness decrease smoothly to zero in a finite interval 

  41. J. Sound Vib. Tang 391 116 2017 10.1016/j.jsv.2016.11.010 Enhanced Acoustic Black Hole effect in beams with a modified thickness profile and extended platform 

  42. J. Sound Vib. Lee 452 191 2019 10.1016/j.jsv.2019.02.016 Exact solution of Euler-Bernoulli equation for acoustic black holes via generalized hypergeometric differential equation 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로