$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Insightful understanding of hot-carrier generation and transfer in plasmonic AuCeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement

Applied catalysis. B, Environmental, v.286, 2021년, pp.119947 -   

Dao, Dung Van (Institute of Research and Development, Duy Tan University) ,  Nguyen, Thuy T.D. (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Jeonbuk National University) ,  Uthirakumar, Periyayya (Department of Materials Science and Engineering, Korea University) ,  Cho, Yeong-Hoon (Department of Materials Science and Engineering, Korea University) ,  Kim, Gyu-Cheol (Department of Materials Science and Engineering, Korea University) ,  Yang, Jin-Kyu (Department of Optical Engineering, Kongju National University) ,  Tran, Duy-Thanh (Department of Nano Convergence Engineering, Jeonbuk National University) ,  Le, Thanh Duc (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Jeonbuk National University) ,  Choi, Hyuk (Department of Materials Science and Engineering, Chungnam Nat) ,  Kim, Hyun You ,  Yu, Yeon-Tae ,  Lee, In-Hwan

Abstract AI-Helper 아이콘AI-Helper

Abstract Plasmonic metal@semiconductor core–shell nanoparticles (CSNPs) are considered as promising candidates for artificial photosynthesis. Herein, Au@CeO2 CSNPs are hydrothermally fabricated for photocatalytic hydrogen evolution reaction (HER). CSNPs deliver superior HER performance compar...

Keyword

참고문헌 (57)

  1. Appl. Catal. B: Environ. Kim 282 2021 10.1016/j.apcatb.2020.119538 Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production 

  2. Appl. Catal. B: Environ. Shi 254 594 2019 10.1016/j.apcatb.2019.05.031 In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity 

  3. J. Mater. Chem. A Van Dao 8 7687 2020 10.1039/D0TA00811G Plasmonically driven photocatalytic hydrogen evolution activity of a Pt-functionalized Au@CeO2 core-shell catalyst under visible light 

  4. Appl. Catal. B: Environ. Vikrant 259 2019 10.1016/j.apcatb.2019.118025 Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation 

  5. Appl. Catal. B: Environ. Do 237 895 2018 10.1016/j.apcatb.2018.06.070 Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2) 

  6. Appl. Catal. B: Environ. Kim 280 2021 10.1016/j.apcatb.2020.119423 Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface 

  7. Appl. Catal. B: Environ. Oh 218 349 2017 10.1016/j.apcatb.2017.06.067 New insight of the photocatalytic behaviors of graphitic carbon nitrides for hydrogen evolution and their associations with grain size, porosity, and photophysical properties 

  8. ChemSusChem Zeng 13 2935 2020 10.1002/cssc.202000562 A promising alternative for sustainable and highly efficient solar-driven deuterium evolution at room temperature by photocatalytic D2O splitting 

  9. Nat. Chem. Kim 10 763 2018 10.1038/s41557-018-0054-3 Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles 

  10. Nat. Mater. Linic 10 911 2011 10.1038/nmat3151 Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy 

  11. Nano Lett. Kim 16 3879 2016 10.1021/acs.nanolett.6b01390 The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals 

  12. Appl. Catal. B: Environ. Qin 209 161 2017 10.1016/j.apcatb.2017.03.005 Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation 

  13. J. Solid State Chem. Zeng 253 294 2017 10.1016/j.jssc.2017.06.005 In situ plasmonic Au nanoparticle anchored nickel ferrite: an efficient plasmonic photocatalyst for fluorescein-sensitized hydrogen evolution under visible light irradiation 

  14. Chem. Rev. Halas 111 3913 2011 10.1021/cr200061k Plasmons in strongly coupled metallic nanostructures 

  15. Appl. Catal. B: Environ. Lee 214 15 2017 10.1016/j.apcatb.2017.05.025 Size-dependent plasmonic effects of M and M@SiO2 (M=Au or Ag) deposited on TiO2 in photocatalytic oxidation reactions 

  16. Energy Environ. Sci. Warren 5 5133 2012 10.1039/C1EE02875H Plasmonic solar water splitting 

  17. Appl. Catal. B: Environ. Verma 223 10 2018 10.1016/j.apcatb.2017.05.017 Enhancement of plasmonic activity by Pt/Ag bimetallic nanocatalyst supported on mesoporous silica in the hydrogen production from hydrogen storage material 

  18. NPG Asia Mater. Furube 9 2017 10.1038/am.2017.191 Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication 

  19. Nat. Photonics Novotny 5 83 2011 10.1038/nphoton.2010.237 Antennas for light 

  20. Energy Environ. Sci. Erwin 9 1577 2016 10.1039/C5EE03847B Light trapping in mesoporous solar cells with plasmonic nanostructures 

  21. Science Wu 349 632 2015 10.1126/science.aac5443 Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition 

  22. J. Am. Chem. Soc. Tian 127 7632 2005 10.1021/ja042192u Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles 

  23. RSC Adv. Zeng 6 54964 2016 10.1039/C6RA08356K Plasmonic photocatalyst Au/g-C3N4/NiFe2O4 nanocomposites for enhanced visible-light-driven photocatalytic hydrogen evolution 

  24. J. Catal. Dao 377 589 2019 10.1016/j.jcat.2019.07.054 Au@CeO2 nanoparticles supported Pt/C electrocatalyst to improve the removal of CO in methanol oxidation reaction 

  25. Appl. Catal. B: Environ. Zhu 259 2019 10.1016/j.apcatb.2019.118072 CeO2nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption 

  26. J. Mater. Chem. A Dao 7 26996 2019 10.1039/C9TA09333H Pt-loaded Au@CeO2 core-shell nanocatalysts for improving methanol oxidation reaction activity 

  27. Appl. Catal. B: Environ. Zou 238 111 2018 10.1016/j.apcatb.2018.07.022 Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution 

  28. Nanoscale Qin 8 2249 2016 10.1039/C5NR06346A Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation 

  29. Energy Environ. Sci. Qi 5 8937 2012 10.1039/c2ee22600f Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation 

  30. Nat. Photonics Li 9 601 2015 10.1038/nphoton.2015.142 Plasmon-induced resonance energy transfer for solar energy conversion 

  31. Chem. Eng. J. Song 287 359 2016 10.1016/j.cej.2015.11.030 Fullerene [C60] modified Cr2−xFexO3 nanocomposites for enhanced photocatalytic activity under visible light irradiation 

  32. ACS Catal. Ha 8 11491 2018 10.1021/acscatal.8b03539 Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: effect of the Au-CeO2 interface 

  33. J. Am. Chem. Soc. Kim 134 1560 2012 10.1021/ja207510v CO oxidation mechanism on CeO2-supported Au nanoparticles 

  34. Phys. Rev. Lett. Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Generalized gradient approximation made simple 

  35. Phys. Rev. B Kresse 59 1758 1999 10.1103/PhysRevB.59.1758 From ultrasoft pseudopotentials to the projector augmented-wave method 

  36. Energy Environ. Sci. Yoo 13 1231 2020 10.1039/C9EE03492G A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity 

  37. Nano Lett. Kim 17 348 2017 10.1021/acs.nanolett.6b04218 Controlled growth of ceria nanoarrays on anatase titania powder: a bottom-up physical picture 

  38. Mater. Des. Van Dao 159 186 2018 10.1016/j.matdes.2018.08.042 Ionic liquid-assisted preparation of Ag-CeO2 nanocomposites and their improved photocatalytic activity 

  39. J. Am. Chem. Soc. Hirakawa 127 3928 2005 10.1021/ja042925a Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−irradiation 

  40. J. Phys. Chem. Lett. Kim 4 216 2013 10.1021/jz301778b CO oxidation at the interface of Au nanoclusters and the stepped-CeO2(111) surface by the Mars-Van Krevelen mechanism 

  41. J. Mater. Chem. A Engel 8 15695 2020 10.1039/D0TA01398F The influence of oxygen vacancy and Ce3+ ion positions on the properties of small gold clusters supported on CeO2−x(111) 

  42. Chem. Lett. Fudo 48 939 2019 10.1246/cl.190379 Cocatalyst-free plasmonic H2 production over Au/Ta2O5 under irradiation of visible light 

  43. Catal. Sci. Technol. Fudo 9 3047 2019 10.1039/C9CY00673G Effect of conduction band potential on cocatalyst-free plasmonic H2 evolution over Au loaded on Sr2+-doped CeO2 

  44. Chem. Lett. Hou 48 200 2018 10.1246/cl.180876 Photocatalytic overall water splitting on RuO2-loaded Sm3+-doped CeO2 with heterogenous doping structure 

  45. Int. J. Hydrog. Energy Meng 36 13435 2011 10.1016/j.ijhydene.2011.07.089 Reactivity of CeO2-based ceramics for solar hydrogen production via a two-step water-splitting cycle with concentrated solar energy 

  46. Nat. Catal. Aslam 1 656 2018 10.1038/s41929-018-0138-x Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures 

  47. Nat. Photonics Green 6 130 2012 10.1038/nphoton.2012.30 Harnessing plasmonics for solar cells 

  48. Nat. Photonics Clavero 8 95 2014 10.1038/nphoton.2013.238 Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices 

  49. Chem. Sci. Tanaka 8 2574 2017 10.1039/C6SC05135A Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts 

  50. Nat. Nanotechnol. Mubeen 8 247 2013 10.1038/nnano.2013.18 An autonomous photosynthetic device in which all charge carriers derive from surface plasmons 

  51. Appl. Catal. B: Environ. Antolini 2018 10.1016/j.apcatb.2018.06.029 Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: a short review 

  52. J. Mater. Chem. A Lee 6 4068 2018 10.1039/C7TA09953C Metal-semiconductor yolk-shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution 

  53. ACS Catal. Zhao 8 4266 2018 10.1021/acscatal.8b00317 Fabricating a Au@TiO2 plasmonic system to elucidate alkali-induced enhancement of photocatalytic H2 evolution: surface potential shift or methanol oxidation acceleration? 

  54. J. Am. Chem. Soc. Hong 138 15766 2016 10.1021/jacs.6b10288 Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis 

  55. Appl. Sci. Romasanta 9 3886 2019 10.3390/app9183886 Thin coatings of cerium oxide nanoparticles with anti-reflective properties 

  56. J. Am. Chem. Soc. Zheng 137 948 2015 10.1021/ja511719g Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level 

  57. Nat. Nanotechnol. Choi 14 245 2019 10.1038/s41565-019-0367-4 Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로