$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Low-temperature CO2 hydrogenation to CO on Ni-incorporated LaCoO3 perovskite catalysts

International journal of hydrogen energy, v.46 no.29, 2021년, pp.15497 - 15506  

Lim, Hyun Suk (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Minbeom (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Yikyeom (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kang, Dohyung (School of Chemical Engineering, Yeungnam University) ,  Lee, Jae W. (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract This work introduces LaCo1-xNixO3 (x = 0, 0.1, 0.25, and 0.4) perovskite catalysts for enhancing the low temperature performance of reverse water-gas shift (RWGS) reaction. Incorporating Ni lowers the interaction between La-site and B-site, weakening the electron donation from La-site to B...

Keyword

참고문헌 (47)

  1. Int J Hydrogen Energy Colpan 45 3395 2020 10.1016/j.ijhydene.2019.12.069 Preface to special issue on hydrogen energy technologies for mitigating global warming 

  2. J CO2 Utiliz Byeon 26 28 2018 10.1016/j.jcou.2018.04.014 Enhanced electrocatalytic reduction of oxygen at CO2-derived FeNB-doped porous carbon 

  3. J Mater Chem A Kim 3 10919 2015 10.1039/C5TA01776A Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture 

  4. Catal Today Kim 2020 Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization 

  5. Int J Hydrogen Energy Zhu 44 10218 2019 10.1016/j.ijhydene.2019.02.187 Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping 

  6. Appl Catal B Environ Kang 186 41 2016 10.1016/j.apcatb.2015.12.045 Enhanced methane decomposition over nickel-carbon-B2O3 core-shell catalysts derived from carbon dioxide 

  7. Int J Hydrogen Energy Niu 45 30267 2020 10.1016/j.ijhydene.2020.08.067 Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: from experimental study and DFT calculations 

  8. Int J Hydrogen Energy Xie 45 51 26938 2020 10.1016/j.ijhydene.2020.05.260 CO2 hydrogenation on Co/CeO2-δ catalyst: morphology effect from CeO2 support 

  9. Int J Hydrogen Energy Karam 45 28626 2020 10.1016/j.ijhydene.2020.07.170 Assessing the potential of xNi-yMg-Al2O3 catalysts prepared by EISA-one-pot synthesis towards CO2 methanation: an overall study 

  10. Int J Hydrogen Energy Ahmad 45 1140 2020 10.1016/j.ijhydene.2019.10.156 Kinetics of CO2 hydrogenation to methanol over silica supported intermetallic Ga3Ni5 catalyst in a continuous differential fixed bed reactor 

  11. Int J Hydrogen Energy Kosaka 46 5 4116 2020 10.1016/j.ijhydene.2020.10.247 Thermal management of CO2 methanation with axial staging of active metal concentration in Ni-YSZ tubular catalysts 

  12. ACS Sustainable Chem Eng Lee 2 1503 2014 10.1021/sc500179r Concurrent production of carbon monoxide and manganese(II) oxide through the reaction of carbon dioxide with manganese 

  13. Int J Hydrogen Energy Kang 42 11270 2017 10.1016/j.ijhydene.2017.02.042 Enhanced catalytic activity of methane dry reforming by the confinement of Ni nanoparticles into mesoporous silica 

  14. J CO2 Utiliz Morse 35 38 2020 10.1016/j.jcou.2019.08.024 Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction 

  15. Int J Hydrogen Energy Zhou 45 11380 2020 10.1016/j.ijhydene.2020.02.058 Supported mesoporous Cu/CeO2-δ catalyst for CO2 reverse water-gas shift reaction to syngas 

  16. Catal Today Oshima 232 27 2014 10.1016/j.cattod.2013.11.035 Low temperature catalytic reverse water gas shift reaction assisted by an electric field 

  17. ACS Catal Kim 4 3117 2014 10.1021/cs500476e Dopant effect of barium Zirconate-based perovskite-type catalysts for the intermediate-temperature reverse water gas shift reaction 

  18. Int J Hydrogen Energy Sun 40 15985 2015 10.1016/j.ijhydene.2015.10.004 Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS) 

  19. ACS Catal Zhang 7 912 2017 10.1021/acscatal.6b02991 Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction 

  20. Chem Commun Xu 53 7953 2017 10.1039/C7CC02130E Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water-gas shift reaction 

  21. Appl Catal Gen Chen 257 97 2004 10.1016/S0926-860X(03)00637-9 Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction 

  22. J Catal Kattel 343 115 2016 10.1016/j.jcat.2015.12.019 CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: importance of synergy between Pt and oxide support 

  23. Appl Catal B Environ Yang 216 95 2017 10.1016/j.apcatb.2017.05.067 Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction 

  24. Appl Catal Gen Ro 521 182 2016 10.1016/j.apcata.2015.11.021 Intrinsic kinetics of plasmon-enhanced reverse water gas shift on Au and Au-Mo interfacial sites supported on silica 

  25. Appl Catal B Environ Lim 202 175 2017 10.1016/j.apcatb.2016.09.020 Phase transition of Fe2O3-NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion 

  26. Energy Convers Manag Lee 207 112507 2020 10.1016/j.enconman.2020.112507 Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3 

  27. Appl Catal B Environ Zubenko 209 711 2017 10.1016/j.apcatb.2017.03.047 Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming 

  28. Chem Eng J Lim 127557 2020 Ni-exsolved La1-xCaxNiO3 perovskites for improving CO2 methanation 

  29. Int J Hydrogen Energy Liu 45 21123 2020 10.1016/j.ijhydene.2020.05.186 Chemical looping steam reforming of bio-oil for hydrogen-rich syngas production: effect of doping on LaNi0.8Fe0.2O3 perovskite 

  30. Int J Hydrogen Energy Deng 45 13129 2020 10.1016/j.ijhydene.2020.03.057 SrTi0.1CoxFe0.9-xO3-δ Perovskites for enhanced oxygen evolution reaction activity 

  31. Appl Catal B Environ Liu 265 118573 2020 10.1016/j.apcatb.2019.118573 Low temperature catalytic reverse water-gas shift reaction over perovskite catalysts in DBD plasma 

  32. Int J Hydrogen Energy Lim 43 20580 2018 10.1016/j.ijhydene.2018.09.067 Role of transition metal in perovskites for enhancing selectivity of methane to syngas 

  33. Int J Hydrogen Energy Maneerung 42 9840 2017 10.1016/j.ijhydene.2017.01.060 K-doped LaNiO3 perovskite for high-temperature water-gas shift of reformate gas: role of potassium on suppressing methanation 

  34. J Catal Zhao 358 168 2018 10.1016/j.jcat.2017.12.012 LaFe0.9Ni0.1O3 perovskite catalyst with enhanced activity and coke-resistance for dry reforming of ethane 

  35. Fuel Kang 215 787 2018 10.1016/j.fuel.2017.11.106 Chemical looping partial oxidation of methane with CO2 utilization on the ceria-enhanced mesoporous Fe2O3 oxygen carrier 

  36. Phys Chem Chem Phys Liao 18 17311 2016 10.1039/C6CP01089J An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst 

  37. J Catal Yan 374 60 2019 10.1016/j.jcat.2019.04.036 Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites 

  38. J Catal Crespin 69 359 1981 10.1016/0021-9517(81)90171-8 The surface chemistry of some perovskite oxides 

  39. Appl Catal B Environ Jia 244 159 2019 10.1016/j.apcatb.2018.11.024 Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity 

  40. Appl Catal B Environ Garbarino 248 286 2019 10.1016/j.apcatb.2018.12.063 A study of Ni/La-Al2O3 catalysts: a competitive system for CO2 methanation 

  41. J Nat Gas Chem Cai 20 318 2011 10.1016/S1003-9953(10)60187-9 Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier 

  42. Appl Surf Sci Gonzalez Tejuca 31 301 1988 10.1016/0169-4332(88)90095-5 Surface behaviour of reduced LaCoO3 as studied by TPD of CO, CO2 and H2 probes and by XPS 

  43. ACS Catal Guo 8 6203 2018 10.1021/acscatal.7b04469 Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect 

  44. Proceedings Takuya 2 801 2018 10.3390/proceedings2130801 Rare-earth based chemoresistive CO2 sensors and their operando investigations 

  45. Ind Eng Chem Res Hakim 55 7888 2016 10.1021/acs.iecr.5b04091 Studies on CO2 adsorption and desorption properties from various types of iron oxides (FeO, Fe2O3, and Fe3O4) 

  46. J Phys Chem C Jing 123 1235 2019 10.1021/acs.jpcc.8b09884 Theoretical study of the reverse water gas shift reaction on copper modified β-Mo2C(001) surfaces 

  47. RSC Adv Daza 6 49675 2016 10.1039/C6RA05414E CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로