최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of energy research, v.45 no.7, 2021년, pp.11320 - 11328
Jeong, Mun Goung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) , Kim, Joong Bae (Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) , Qin, Caiyan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) , Lee, Jungchul (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) , Lee, Bong Jae (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea)
SummaryTherminol‐based nanofluids with graphite nanopowders (GNs) were proposed as an efficient working fluid in direct‐absorption solar collectors (DASCs), especially for elevated‐temperature applications. In this work, Therminol VP‐1/GN nanofluids (TG nanofluids) were prepa...
Kalogirou SA . Solar thermal collectors and applications . Prog Energy Combust Sci . 2004 ; 30 ( 3 ): 231 ‐ 295 . https://doi.org/10.1016/j.pecs.2004.02.001.
Duffie JA , Beckman WA . Solar Engineering of Thermal Processes . Hoboken, New Jersey : Wiley ; 1980 .
Lee SH , Choi TJ , Jang SP . Thermal efficiency comparison: surface‐based solar receivers with conventional fluids and volumetric solar receivers with nanofluids . Energy . 2016 ; 115 : 404 ‐ 417 . https://doi.org/10.1016/j.energy.2016.09.024.
Minardi JE , Chuang HN . Performance of a “black” liquid flat‐plate solar collector . Sol Energy . 1975 ; 17 ( 3 ): 179 ‐ 183 . https://doi.org/10.1016/0038-092x(75)90057-2.
Jeon J , Park S , Lee BJ . Analysis on the performance of a flat‐plate volumetric solar collector using blended plasmonic nanofluid . Sol Energy . 2016 ; 132 : 247 ‐ 256 . https://doi.org/10.1016/j.solener.2016.03.022.
Owolabi AL , Al‐Kayiem HH , Baheta AT . Performance investigation on a thermal energy storage integrated solar collector system using nanofluid . Int J Energy Res . 2017 ; 41 ( 5 ): 650 ‐ 657 . https://doi.org/10.1002/er.3657.
Sharafeldin MA , Gróf G , Mahian O . Experimental study on the performance of a flat‐plate collector using WO 3 /water nanofluids . Energy . 2017 ; 141 : 2436 ‐ 2444 . https://doi.org/10.1016/j.energy.2017.11.068.
Kim H , Kim J , Cho H . Experimental study on performance improvement of U‐tube solar collector depending on nanoparticle size and concentration of Al 2 O 3 nanofluid . Energy . 2017 ; 118 : 1304 ‐ 1312 . https://doi.org/10.1016/j.energy.2016.11.009.
Esmaeili M , Karami M , Delfani S . Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid . Int J Energy Res . 2020 ; 44 ( 7 ): 5527 ‐ 5544 . https://doi.org/10.1002/er.5305.
Eltaweel M , Abdel‐Rehim AA , Hussien H . Indirect thermosiphon flat‐plate solar collector performance based on twisted tube design heat exchanger filled with nanofluid . Int J Energy Res . 2020 ; 44 ( 6 ): 4269 ‐ 4278 . https://doi.org/10.1002/er.5146.
Qu J , Zhang R , Wang Z , Wang Q . Photo‐thermal conversion properties of hybrid CuO‐MWCNT/H 2 O nanofluids for direct solar thermal energy harvest . Appl Therm Eng . 2019 ; 147 : 390 ‐ 398 . https://doi.org/10.1016/j.applthermaleng.2018.10.094.
Tong Y , Boldoo T , Ham J , Cho H . Improvement of photo‐thermal energy conversion performance of MWCNT/Fe 3 O 4 hybrid nanofluid compared to Fe 3 O 4 nanofluid . Energy . 2020 ; 196 : 117086 . https://doi.org/10.1016/j.energy.2020.117086.
Lee BJ , Park K , Walsh T , Xu L . Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption . J Sol Energy Eng . 2012 ; 134 ( 2 ):021009‐1–6. https://doi.org/10.1115/1.4005756.
Otanicar T , Hoyt J , Fahar M , Jiang X , Taylor RA . Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions . J Nanopart Res . 2013 ; 15 ( 11 ):2039‐1–11. https://doi.org/10.1007/s11051-013-2039-x.
Gimeno‐Furio A , Navarrete N , Mondragon R , et al. Stabilization and characterization of a nanofluid based on a eutectic mixture of diphenyl and diphenyl oxide and carbon nanoparticles under high temperature conditions . Int J Heat Mass Transf . 2017 ; 113 : 908 ‐ 913 . https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.097.
Colangelo G , Favale E , Miglietta P , Milanese M , Risi DA . Thermal conductivity, viscosity and stability of Al 2 O 3 ‐diathermic oil nanofluids for solar energy systems . Energy . 2016 ; 95 : 124 ‐ 136 . https://doi.org/10.1016/j.energy.2015.11.032.
Gulzar O , Qayoum A , Gupta R . Experimental study on thermal conductivity of mono and hybrid Al 2 O 3 ‐TiO 2 nanofluids for concentrating solar collectors . Int J Energy Res . 2020 ; 45 : 1 ‐ 15 . https://doi.org/10.1002/er.6105.
Lee R , Kim JB , Qin C , Lee H , Lee BJ , Jung GY . Synthesis of therminol‐based plasmonic nanofluids with core/shell nanoparticles and characterization of their absorption/scattering coefficients . Sol Energy Mater Sol Cells . 2020 ; 209 : 110442 . https://doi.org/10.1016/j.solmat.2020.110442.
Mesgari S , Coulombe S , Hordy N , Taylor RA . Thermal stability of carbon nanotube‐based nanofluids for solar thermal collectors . Mater Res Innov . 2015 ; 19 ( Suppl 5 ): S5–650 ‐ S5–653 . https://doi.org/10.1179/1432891714z.0000000001169.
Mesgari S , Taylor RA , Hjerrild NE , Crisostomo F , Li Q , Scott J . An investigation of thermal stability of carbon nanofluids for solar thermal applications . Sol Energy Mater Sol Cells . 2016 ; 157 : 652 ‐ 659 . https://doi.org/10.1016/j.solmat.2016.07.032.
Veeraragavan A , Lenert A , Yilbas B , Al‐Dini S , Wang EN . Analytical model for the design of volumetric solar flow receivers . Int J Heat Mass Transf . 2012 ; 55 ( 4 ): 556 ‐ 564 . https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.001.
Taylor RA , Phelan PE , Otanicar TP , et al. Applicability of nanofluids in high flux solar collectors . J Renewable Sustainable Energy . 2011 ; 3 ( 2 ): 023104 . https://doi.org/10.1063/1.3571565.
Solutia . Therminol VP‐1 vapor phase, liquid phase heat transfer fluid 12°C to 400°C . 2013. http://twt.mpei.ac.ru/tthb/hedh/htf-vp1.pdf. Accessed October 3, 2020.
Kim JB , Jeong MG , Lee BJ . Synthesis of low viscous dielectric nanofluids and characterization of convection heat transfer . J Thermophys Heat Transf . 2018 ; 32 ( 4 ): 965 ‐ 974 . https://doi.org/10.2514/1.t5353.
Kim JB , Lee S , Lee K , Lee I , Lee BJ . Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra . J Quant Spectrosc Radiat Transf . 2018 ; 213 : 107 ‐ 112 . https://doi.org/10.1016/j.jqsrt.2018.04.018.
Saidur R , Meng T , Said Z , Hasanuzzaman M , Kamyar A . Evaluation of the effect of nanofluid‐based absorbers on direct solar collector . Int J Heat Mass Transf . 2012 ; 55 ( 21–22 ): 5899 ‐ 5907 . https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.087.
Said Z , Sajid MH , Saidur R , Mahdiraji GA , Rahim NA . Evaluating the optical properties of TiO 2 Nanofluid for a direct absorption solar collector . Numer Heat Transf A . 2015 ; 67 ( 9 ): 1010 ‐ 1027 . https://doi.org/10.1080/10407782.2014.955344.
Bohren CF , Huffman DR . Absorption and Scattering of Light by Small Particles . Weinheim, Germany : Wiley ; 1983 .
Modest MF . Radiative Heat Transfer . Oxford : Academic Press ; 2013 .
Won KH , Lee BJ . Effect of light scattering on the performance of a direct absorption solar collector . Front Energy . 2018 ; 12 ( 1 ): 169 ‐ 177 . https://doi.org/10.1007/s11708-018-0527-5.
Michalec G , Buchsbaum F , Tanaka H , et al. Elements of metric gear technology . 2009. https://gearkade.com/wp‐content/uploads/2019/08/Elements‐of‐Metric‐Gear‐Technology.pdf. Accessed October 3, 2020.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.