$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Comparative Immunological Characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 Coronavirus Infections 원문보기

Frontiers in immunology, v.11, 2020년, pp.2033 -   

Zhang, Yun-yu ,  Li, Bi-ru ,  Ning, Bo-tao

Abstract AI-Helper 아이콘AI-Helper

Immune dysfunction and aberrant cytokine storms often lead to rapid exacerbation of the disease during late infection stages in SARS-CoV and MERS-CoV patients. However, the underlying immunopathology mechanisms are not fully understood, and there has been little progress in research regarding the de...

주제어

참고문헌 (133)

  1. 1. World Health Organization WHO Director-General's Remarks at the Media Briefing on 2019-nCoV on 11 February 2020 ( 2020 ). 

  2. 2. World Health Organization Coronavirus Disease (COVID-19) Situation Report ? 163. ( 2020 ). 

  3. 3. Peiris JS Chu CM Cheng VC Chan KS Hung IF Poon LL . Group USS. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study . Lancet. ( 2003 ) 361 : 1767 ? 72 . 10.1016/S0140-6736(03)13412-5 12781535 

  4. 4. Zumla A Hui DS Perlman S . Middle East respiratory syndrome . Lancet. ( 2015 ) 386 : 995 ? 1007 . 10.1016/S0140-6736(15)60454-8 26049252 

  5. 5. Prompetchara E Ketloy C Palaga T . Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic . Asian Pac J Allergy Immunol. ( 2020 ) 38 : 1 ? 9 . 10.12932/AP-200220-0772 32105090 

  6. 6. Chan JF Lau SK To KK Cheng VC Woo PC Yuen KY . Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease . Clin Microbiol Rev. ( 2015 ) 28 : 465 ? 522 . 10.1128/CMR.00102-14 25810418 

  7. 7. To KK Tsang OT Leung WS Tam AR Wu TC Lung DC . Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study . Lancet Infect Dis . ( 2020 ) 20 : 565 ? 74 . 10.1016/S1473-3099(20)30196-1 32213337 

  8. 8. The Who Mers-Cov Research Group State of knowledge and data gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in humans . PLoS Curr . ( 2013 ) 

  9. 9. Wang D Hu B Hu C Zhu F Liu X Zhang J . Clinical characteristics of 138 hospitalised patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China . JAMA . ( 2020 ) 323 : 1061 ? 9 . 10.1001/jama.2020.1585 32031570 

  10. 10. Guan WJ Ni ZY Hu Y Liang WH Ou CQ He JX . China Medical Treatment Expert Group for, clinical characteristics of coronavirus disease 2019 in China . N Engl J Med . ( 2020 ) 382 : 1708 ? 20 . 10.1056/NEJMoa2002032 32109013 

  11. 11. Wu JT Leung K Leung GM . Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study . Lancet. ( 2020 ) 395 : 689 ? 97 . 10.1016/S0140-6736(20)30260-9 32014114 

  12. 12. Xiao K Zhai J Feng Y Zhou N Zhang X Zou JJ . Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins . Nature . ( 2020 ) 583 : 286 ? 9 . 10.1038/s41586-020-2313-x 32380510 

  13. 13. Ruan Q Yang K Wang W Jiang L Song J Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China . Intensive Care Med. ( 2020 ) 46 : 846 ? 8 . 10.1007/s00134-020-05991-x 32125452 

  14. 14. Wu Z McGoogan JM . Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention . JAMA . ( 2020 ) 323 : 1239 ? 42 . 10.1001/jama.2020.2648 32091533 

  15. 15. Wu A Peng Y Huang B Ding X Wang X Niu P . Genome composition and divergence of the novel Coronavirus (2019-nCoV) originating in China . Cell Host Microbe. ( 2020 ) 27 : 325 ? 8 . 10.1016/j.chom.2020.02.001 32035028 

  16. 16. Hamming I Timens W Bulthuis ML Lely AT Navis G van Goor H . Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis . J Pathol. ( 2004 ) 203 : 631 ? 7 . 10.1002/path.1570 15141377 

  17. 17. Raj VS Mou H Smits SL Dekkers DH Muller MA Dijkman R . Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC . Nature. ( 2013 ) 495 : 251 ? 4 . 10.1038/nature12005 23486063 

  18. 18. Lu R Zhao X Li J Niu P Yang B Wu H . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding . Lancet. ( 2020 ) 395 : 565 ? 74 . 10.1016/S0140-6736(20)30251-8 32007145 

  19. 19. Zhou P Yang XL Wang XG Hu B Zhang L Zhang W . A pneumonia outbreak associated with a new coronavirus of probable bat origin . Nature. ( 2020 ) 579 : 270 ? 3 . 10.1038/s41586-020-2012-7 32015507 

  20. 20. Benvenuto D Giovanetti M Ciccozzi A Spoto S Angeletti S Ciccozzi M . The 2019-new coronavirus epidemic: evidence for virus evolution . J Med Virol. ( 2020 ) 92 : 455 ? 9 . 10.1002/jmv.25688 31994738 

  21. 21. World Health Organization Summary of Probable SARS Cases With Onset of Illness From 1 November 2002 to 31 July 2003 ( 2003 ). 

  22. 22. Epidemiology Working Group for NCIP Epidemic Response Chinese Center for Disease Control and Prevention . [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China] . Zhonghua Liu Xing Bing Xue Za Zhi . ( 2020 ) 41 : 145 ? 51 . 10.3760/cma.j.issn.0254-6450.2020.02.003 32064853 

  23. 23. Granados A Peci A McGeer A Gubbay JB . Influenza and rhinovirus viral load and disease severity in upper respiratory tract infections . J Clin Virol. ( 2017 ) 86 : 14 ? 19 . 10.1016/j.jcv.2016.11.008 27893998 

  24. 24. Wang WK Chen SY Liu IJ Kao CL Chen HL Chiang BL . Severe acute respiratory syndrome research group of the National Taiwan University College of Medicine, temporal relationship of viral load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in patients with severe acute respiratory syndrome . Clin Infect Dis. ( 2004 ) 39 : 1071 ? 5 . 10.1086/423808 15472864 

  25. 25. Chen W Xu Z Mu J Yang L Gan H Mu F . Antibody response and viraemia during the course of severe acute respiratory syndrome (SARS)-associated coronavirus infection . J Med Microbiol. ( 2004 ) 53 : 435 ? 38 . 10.1099/jmm.0.45561-0 15096554 

  26. 26. Hung IF Cheng VC Wu AK Tang BS Chan KH Chu CM . Viral loads in clinical specimens and SARS manifestations . Emerg Infect Dis. ( 2004 ) 10 : 1550 ? 7 . 10.3201/eid1009.040058 15498155 

  27. 27. Chu CM Poon LL Cheng VC Chan KS Hung IF Wong MM . Initial viral load and the outcomes of SARS . CMAJ. ( 2004 ) 171 : 1349 ? 52 . 10.1503/cmaj.1040398 15557587 

  28. 28. Snijder EJ van der Meer Y Zevenhoven-Dobbe J Onderwater JJ van der Meulen J Koerten HK . Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex . J Virol. ( 2006 ) 80 : 5927 ? 40 . 10.1128/JVI.02501-05 16731931 

  29. 29. Bouvet M Debarnot C Imbert I Selisko B Snijder EJ Canard B . In vitro reconstitution of SARS-coronavirus mRNA cap methylation . PLoS Pathog. ( 2010 ) 6 : e1000863 . 10.1371/journal.ppat.1000863 20421945 

  30. 30. Hu W Yen YT Singh S Kao CL Wu-Hsieh BA . SARS-CoV regulates immune function-related gene expression in human monocytic cells . Viral Immunol. ( 2012 ) 25 : 277 ? 88 . 10.1089/vim.2011.0099 22876772 

  31. 31. Connor RF Roper RL . Unique SARS-CoV protein nsp1: bioinformatics, biochemistry and potential effects on virulence . Trends Microbiol. ( 2007 ) 15 : 51 ? 3 . 10.1016/j.tim.2006.12.005 17207625 

  32. 32. Cheng VC Lau SK Woo PC Yuen KY . Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection . Clin Microbiol Rev. ( 2007 ) 20 : 660 ? 94 . 10.1128/CMR.00023-07 17934078 

  33. 33. de Wit E van Doremalen N Falzarano D Munster VJ . SARS and MERS: recent insights into emerging coronaviruses . Nat Rev Microbiol. ( 2016 ) 14 : 523 ? 34 . 10.1038/nrmicro.2016.81 27344959 

  34. 34. Channappanavar R Perlman S . Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology . Semin Immunopathol. ( 2017 ) 39 : 529 ? 39 . 10.1007/s00281-017-0629-x 28466096 

  35. 35. Law HK Cheung CY Ng HY Sia SF Chan YO Luk W . Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells . Blood. ( 2005 ) 106 : 2366 ? 74 . 10.1182/blood-2004-10-4166 15860669 

  36. 36. Cheung CY Poon LL Ng IH Luk W Sia SF Wu MH . Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro : possible relevance to pathogenesis . J Virol. ( 2005 ) 79 : 7819 ? 26 . 10.1128/JVI.79.12.7819-7826.2005 15919935 

  37. 37. Broxmeyer HE Sherry B Cooper S Lu L Maze R Beckmann MP . Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression . J Immunol. ( 1993 ) 150 : 3448 ? 58 . 7682242 

  38. 38. Herold S Steinmueller M. von Wulffen W Cakarova L Pinto R Pleschka S . Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand . J Exp Med. ( 2008 ) 205 : 3065 ? 77 . 10.1084/jem.20080201 19064696 

  39. 39. Boonnak K Vogel L Feldmann F Feldmann H Legge KL Subbarao K . Lymphopenia associated with highly virulent H5N1 virus infection due to plasmacytoid dendritic cell-mediated apoptosis of T cells . J Immunol. ( 2014 ) 192 : 5906 ? 12 . 10.4049/jimmunol.1302992 24829418 

  40. 40. Cameron MJ Ran L Xu L Danesh A Bermejo-Martin JF Cameron CM . Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome . J Virol. ( 2007 ) 81 : 8692 ? 706 . 10.1128/JVI.00527-07 17537853 

  41. 41. Hui DS Chan MC Wu AK Ng PC . Severe acute respiratory syndrome (SARS): epidemiology and clinical features . Postgrad Med J. ( 2004 ) 80 : 373 ? 81 . 10.1136/pgmj.2004.020263 15254300 

  42. 42. Wong CK Lam CW Wu AK Ip WK Lee NL Chan IH . Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome . Clin Exp Immunol. ( 2004 ) 136 : 95 ? 103 . 10.1111/j.1365-2249.2004.02415.x 15030519 

  43. 43. Huang KJ Su IJ Theron M Wu YC Lai SK Liu CC . An interferon-gamma-related cytokine storm in SARS patients . J Med Virol. ( 2005 ) 75 : 185 ? 94 . 10.1002/jmv.20255 15602737 

  44. 44. Li CK Wu H Yan H Ma S Wang L Zhang M . T cell responses to whole SARS coronavirus in humans . J Immunol. ( 2008 ) 181 : 5490 ? 500 . 10.4049/jimmunol.181.8.5490 18832706 

  45. 45. Mahallawi WH Khabour OF Zhang Q Makhdoum HM Suliman BA . MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile . Cytokine. ( 2018 ) 104 : 8 ? 13 . 10.1016/j.cyto.2018.01.025 29414327 

  46. 46. Lau SK Lau CC Chan KH Li CP Chen H Jin DY . Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment . J Gen Virol. ( 2013 ) 94 : 2679 ? 90 . 10.1099/vir.0.055533-0 24077366 

  47. 47. Zhou J Chu H Li C Wong BH Cheng ZS Poon VK . Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis . J Infect Dis. ( 2014 ) 209 : 1331 ? 42 . 10.1093/infdis/jit504 24065148 

  48. 48. Liu J Li S Liu J Liang B Wang X Wang H . Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients . EBioMedicine. ( 2020 ) 55 : 102763 . 10.1016/j.ebiom.2020.102763 32361250 

  49. 49. Huang C Wang Y Li X Ren L Zhao J Hu Y . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China . Lancet. ( 2020 ) 395 : 497 ? 506 . 10.1016/S0140-6736(20)30183-5 31986264 

  50. 50. Zhang Y Li J Zhan Y Wu L Yu X Zhang W . Analysis of serum cytokines in patients with severe acute respiratory syndrome . Infect Immun. ( 2004 ) 72 : 4410 ? 5 . 10.1128/IAI.72.8.4410-4415.2004 15271897 

  51. 51. Faure E Poissy J Goffard A Fournier C Kipnis E Titecat M . Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS ONE. ( 2014 ) 9 : e88716 . 10.1371/journal.pone.0088716 24551142 

  52. 52. Yang Y Shen C Li J Yuan J Yang M Wang F Exuberant elevation of IP-10, MCP- 3 and IL-1ra during SARS-CoV-2 infection is associated with dis- ease severity and fatal outcome . medRxiv [Preprint] . ( 2020 ). 10.1101/2020.03.02.20029975 

  53. 53. Li X Xu S Yu M Wang K Tao Y Zhou Y . Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan . J Allergy Clin Immunol . ( 2020 ) 146 : 110 ? 118 . 10.1016/j.jaci.2020.04.006 32294485 

  54. 54. Zhang S Gan J Chen BG Zheng D Zhang JG Lin RH . Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence . Clin Transl Immunol. ( 2020 ) 9 : e1128 . 10.1002/cti2.1128 32399213 

  55. 55. Han SN Meydani SN . Antioxidants, cytokines, and influenza infection in aged mice and elderly humans . J Infect Dis. ( 2000 ) 182 ( Suppl. 1 ): S74 ? 80 . 10.1086/315915 10944487 

  56. 56. Jiang Y Xu J Zhou C Wu Z Zhong S Liu J . Characterisation of cytokine/chemokine profiles of severe acute respiratory syndrome . Am J Respir Crit Care Med. ( 2005 ) 171 : 850 ? 7 . 10.1164/rccm.200407-857OC 15657466 

  57. 57. Ryzhakov G Lai CC Blazek K To KW Hussell T Udalova I . IL-17 boosts proinflammatory outcome of antiviral response in human cells . J Immunol. ( 2011 ) 187 : 5357 ? 62 . 10.4049/jimmunol.1100917 21964025 

  58. 58. Crowe CR Chen K Pociask DA Alcorn JF Krivich C Enelow RI . Critical role of IL-17RA in immunopathology of influenza infection . J Immunol. ( 2009 ) 183 : 5301 ? 10 . 10.4049/jimmunol.0900995 19783685 

  59. 59. Josset L Menachery VD Gralinski LE Agnihothram S Sova P Carter VS . Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus . mBio. ( 2013 ) 4 : e00165 ? 13 . 10.1128/mBio.00165-13 23631916 

  60. 60. Ichikawa A Kuba K Morita M Chida S Tezuka H Hara H . CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin . Am J Respir Crit Care Med. ( 2013 ) 187 : 65 ? 77 . 10.1164/rccm.201203-0508OC 23144331 

  61. 61. Totura AL Baric RS . SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon . Curr Opin Virol. ( 2012 ) 2 : 264 ? 75 . 10.1016/j.coviro.2012.04.004 22572391 

  62. 62. Frieman MB Chen J Morrison TE Whitmore A Funkhouser W Ward JM . SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism . PLoS Pathog. ( 2010 ) 6 : e1000849 . 10.1371/journal.ppat.1000849 20386712 

  63. 63. Channappanavar R Fehr AR Vijay R Mack M Zhao J Meyerholz DK . Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice . Cell Host Microbe. ( 2016 ) 19 : 181 ? 93 . 10.1016/j.chom.2016.01.007 26867177 

  64. 64. Liu W Fontanet A Zhang PH Zhan L Xin ZT Baril L . Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome . J Infect Dis. ( 2006 ) 193 : 792 ? 5 . 10.1086/500469 16479513 

  65. 65. Tang F Quan Y Xin ZT Wrammert J Ma MJ Lv H . Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study . J Immunol. ( 2011 ) 186 : 7264 ? 8 . 10.4049/jimmunol.0903490 21576510 

  66. 66. Lee N Chan PK Ip M Wong E Ho J Ho C . Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome . J Clin Virol. ( 2006 ) 35 : 179 ? 84 . 10.1016/j.jcv.2005.07.005 16112612 

  67. 67. Zhang L Zhang F Yu W He T Yu J Yi CE . Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals . J Med Virol. ( 2006 ) 78 : 1 ? 8 . 10.1002/jmv.20499 16299724 

  68. 68. Liu L Wei Q Lin Q Fang J Wang H Kwok H . Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection . JCI Insight. ( 2019 ) 4 : e123158 . 10.1172/jci.insight.123158 30830861 

  69. 69. Kong SL Chui P Lim B Salto-Tellez M . Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients . Virus Res. ( 2009 ) 145 : 260 ? 9 . 10.1016/j.virusres.2009.07.014 19635508 

  70. 70. Page C Goicochea L Matthews K Zhang Y Klover P Holtzman MJ . Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection . J Virol. ( 2012 ) 86 : 13334 ? 49 . 10.1128/JVI.01689-12 23015710 

  71. 71. Glaser R MacCallum RC Laskowski BF Malarkey WB Sheridan JF Kiecolt-Glaser JK . Evidence for a shift in the Th-1 to Th-2 cytokine response associated with chronic stress and aging . J Gerontol A Biol Sci Med Sci. ( 2001 ) 56 : M477 ? 82 . 10.1093/gerona/56.8.M477 11487599 

  72. 72. Kam YW Kien F Roberts A Cheung YC Lamirande EW Vogel L . Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro . Vaccine. ( 2007 ) 25 : 729 ? 40 . 10.1016/j.vaccine.2006.08.011 17049691 

  73. 73. Cummings DA Schwartz IB Billings L Shaw LB Burke DS . Dynamic effects of antibody-dependent enhancement on the fitness of viruses . Proc Natl Acad Sci USA. ( 2005 ) 102 : 15259 ? 64 . 10.1073/pnas.0507320102 16217017 

  74. 74. Perlman S Dandekar AA . Immunopathogenesis of coronavirus infections: implications for SARS . Nat Rev Immunol. ( 2005 ) 5 : 917 ? 27 . 10.1038/nri1732 16322745 

  75. 75. Jaume M Yip MS Cheung CY Leung HL Li PH Kien F . Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcgammaR pathway . J Virol. ( 2011 ) 85 : 10582 ? 97 . 10.1128/JVI.00671-11 21775467 

  76. 76. Wan Y Shang J Sun S Tai W Chen J Geng Q . Molecular mechanism for antibody-dependent enhancement of coronavirus entry . J Virol. ( 2020 ) 94 : e02015 - 19 . 10.1128/JVI.02015-19 31826992 

  77. 77. Channappanavar R Fett C Zhao J Meyerholz DK Perlman S . Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection . J Virol. ( 2014 ) 88 : 11034 ? 44 . 10.1128/JVI.01505-14 25056892 

  78. 78. Zhao J Zhao J Van Rooijen N Perlman S . Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice . PLoS Pathog. ( 2009 ) 5 : e1000636 . 10.1371/journal.ppat.1000636 19851468 

  79. 79. Zhao J Zhao J Perlman S . T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice . J Virol. ( 2010 ) 84 : 9318 ? 25 . 10.1128/JVI.01049-10 20610717 

  80. 80. Zhao J Zhao J Mangalam AK Channappanavar R Fett C Meyerholz DK . Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses . Immunity. ( 2016 ) 44 : 1379 ? 91 . 10.1016/j.immuni.2016.05.006 27287409 

  81. 81. Liu WJ Zhao M Liu K Xu K Wong G Tan W . T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV . Antiviral Res. ( 2017 ) 137 : 82 ? 92 . 10.1016/j.antiviral.2016.11.006 27840203 

  82. 82. Cui W Fan Y Wu W Zhang F Wang JY Ni AP . Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome . Clin Infect Dis. ( 2003 ) 37 : 857 ? 9 . 10.1086/378587 12955652 

  83. 83. Zhao J Zhao J Legge K Perlman S . Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice . J Clin Invest. ( 2011 ) 121 : 4921 ? 30 . 10.1172/JCI59777 22105170 

  84. 84. Yang Y Xiong Z Zhang S Yan Y Nguyen J Ng B . Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors . Biochem J. ( 2005 ) 392 : 135 ? 43 . 10.1042/BJ20050698 16048439 

  85. 85. Al-Tawfiq JA Hinedi K Ghandour J Khairalla H Musleh S Ujayli A . Middle East respiratory syndrome coronavirus: a case-control study of hospitalised patients . Clin Infect Dis. ( 2014 ) 59 : 160 ? 5 . 10.1093/cid/ciu226 24723278 

  86. 86. Chu H Zhou J Wong BH Li C Chan JF Cheng ZS . Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways . J Infect Dis. ( 2016 ) 213 : 904 ? 14 . 10.1093/infdis/jiv380 26203058 

  87. 87. Chu H Zhou J Wong BH Li C Cheng ZS Lin X . Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response . Virology. ( 2014 ) 454?455 : 197 ? 205 . 10.1016/j.virol.2014.02.018 24725946 

  88. 88. Tseng CT Perrone LA Zhu H Makino S Peters CJ . Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection . J Immunol. ( 2005 ) 174 : 7977 ? 85 . 10.4049/jimmunol.174.12.7977 15944304 

  89. 89. Chan JF Chan KH Choi GK To KK Tse H Cai JP . Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation . J Infect Dis. ( 2013 ) 207 : 1743 ? 52 . 10.1093/infdis/jit123 23532101 

  90. 90. van Doremalen N Miazgowicz KL Milne-Price S Bushmaker T Robertson S Scott D . Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 . J Virol. ( 2014 ) 88 : 9220 ? 32 . 10.1128/JVI.00676-14 24899185 

  91. 91. Lambeir AM Durinx C Scharpe S De Meester I . Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, clinical aspects of the enzyme DPP IV . Crit Rev Clin Lab Sci . ( 2003 ) 40 : 209 ? 94 . 10.1080/713609354 12892317 

  92. 92. Zielecki F Weber M Eickmann M Spiegelberg L Zaki AM Matrosovich M . Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus . J Virol. ( 2013 ) 87 : 5300 ? 4 . 10.1128/JVI.03496-12 23449793 

  93. 93. Menachery VD Eisfeld AJ Schafer A Josset L Sims AC Proll S . Pathogenic influenza viruses and coronaviruses utilise similar and contrasting approaches to control interferon-stimulated gene responses . mBio. ( 2014 ) 5 : e01174 ? 14 . 10.1128/mBio.01174-14 24846384 

  94. 94. Kouzarides T . Chromatin modifications and their function . Cell . ( 2007 ) 128 : 693 ? 705 . 10.1016/j.cell.2007.02.005 17320507 

  95. 95. Channappanavar R Fehr AR Zheng J Wohlford-Lenane C Abrahante JE Mack M . IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes . J Clin Invest. ( 2019 ) 130 : 3625 ? 39 . 10.1172/JCI126363 31355779 

  96. 96. Zhao J Alshukairi AN Baharoon SA Ahmed WA Bokhari AA Nehdi AM . Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses . Sci Immunol. ( 2017 ) 2 : eaan5393 . 10.1126/sciimmunol.aan5393 28778905 

  97. 97. Shin HS Kim Y Kim G Lee JY Jeong I Joh JS . Immune responses to Middle East respiratory syndrome coronavirus during the acute and convalescent phases of human infection . Clin Infect Dis. ( 2019 ) 68 : 984 ? 92 . 10.1093/cid/ciy595 30060038 

  98. 98. Zuo Y Yalavarthi S Shi H Gockman K Zuo M Madison JA Neutrophil extracellular traps in COVID-19 . JCI Insight . ( 2020 ) 5 : e138999 10.1101/2020.04.30.20086736 

  99. 99. Wang F Nie J Wang H Zhao Q Xiong Y Deng L . Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia . J Infect Dis. ( 2020 ) 221 : 1762 ? 9 . 10.1093/infdis/jiaa150 32227123 

  100. 100. Zheng M Gao Y Wang G Song G Liu S Sun D . Functional exhaustion of antiviral lymphocytes in COVID-19 patients . Cell Mol Immunol. ( 2020 ) 17 : 533 ? 5 . 10.1038/s41423-020-0402-2 32203188 

  101. 101. Xu Z Shi L Wang Y Zhang J Huang L Zhang C . Pathological findings of COVID-19 associated with acute respiratory distress syndrome . Lancet Respir Med . ( 2020 ) 8 : 420 ? 22 . 10.1016/S2213-2600(20)30076-X 32085846 

  102. 102. Liao M Liu Y Yuan J Wen Y Xu G Zhao J . Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 . Nat Med. ( 2020 ) 26 : 842 ? 44 . 10.1038/s41591-020-0901-9 32398875 

  103. 103. Wang C Xie J Zhao L . Aveolar Macrophage Activation and Cytokine Storm in the Pathogenesis of Severe COVID-19. Research Square PREPRINT (Version 1). 32574956 

  104. 104. Zhang D Guo R Lei L Liu H Wang Y Wang Y COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome . medRxiv [Preprint] . ( 2020 ). 10.1101/2020.03.24.20042655 

  105. 105. Zhou Y Fu B Zheng X Wang D Zhao C Qi Y Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients . Natl Sci Rev . ( 2020 ) 7 : 998 ? 1002 . 10.1093/nsr/nwaa041 

  106. 106. Feng Z Diao B Wang R Wang G Wang C Tan Y The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes . medRxiv [Preprint] . ( 2020 ). 10.1101/2020.03.27.20045427 

  107. 107. Ziegler CGK Allon SJ Nyquist SK Mbano IM Miao VN Tzouanas CN . SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues . Cell. ( 2020 ) 181 : 1016 ? 35 e19 . 10.1016/j.cell.2020.04.035 32413319 

  108. 108. Wei L Ming S Zou B Wu Y Hong Z Li Z Viral Invasion and Type I Interferon Response Characterise the Immunophenotypes during COVID-19 Infection. SSRN ( 2020 ). 

  109. 109. Zheng HY Zhang M Yang CX Zhang N Wang XC Yang XP . Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients . Cell Mol Immunol . ( 2020 ) 17 : 541 ? 3 . 10.1038/s41423-020-0401-3 32203186 

  110. 110. Chen N Zhou M Dong X Qu J Gong F Han Y . Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study . Lancet. ( 2020 ) 395 : 507 ? 13 . 10.1016/S0140-6736(20)30211-7 32007143 

  111. 111. Ni L Ye F Cheng ML Feng Y Deng YQ Zhao H . Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals . Immunity . ( 2020 ) 52 : 971 ? 7 .e3. 10.1016/j.immuni.2020.04.023 32413330 

  112. 112. Thevarajan I Nguyen THO Koutsakos M . Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 . Nat Med . ( 2020 ) 26 : 453 ? 5 . 10.1038/s41591-020-0819-2 32284614 

  113. 113. Wu D Yang XO . TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib . J Microbiol Immunol Infect . ( 2020 ) 53 : 368 ? 70 . 10.1016/j.jmii.2020.03.005 32205092 

  114. 114. Wu F Wang A Liu M Wang Q Chen J Xia S Neutralising antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications . medRxiv [Preprint] . ( 2020 ) 10.1101/2020.03.30.20047365 

  115. 115. Zhao J Yuan Q Wang H Liu W Liao X Su Y Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 . Clin Infect Dis . ( 2020 ) ciaa344. 10.1101/2020.03.02.20030189 

  116. 116. Chen Y Li L . SARS-CoV-2: virus dynamics and host response . Lancet Infect Dis . ( 2020 ) 20 : 515 ? 16 . 10.1016/S1473-3099(20)30235-8 32213336 

  117. 117. Sanders JM Monogue ML Jodlowski TZ Cutrell JB . Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review . JAMA . ( 2020 ) 323 : 1824 ? 36 . 10.1001/jama.2020.6019 32282022 

  118. 118. Jin Z Du X Xu Y Deng Y Liu M Zhao Y . Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors . Nature . ( 2020 ) 582 : 289 ? 93 . 10.1038/s41586-020-2223-y 32272481 

  119. 119. Tanaka T Narazaki M Kishimoto T . Immunotherapeutic implications of IL-6 blockade for cytokine storm . Immunotherapy. ( 2016 ) 8 : 959 ? 70 . 10.2217/imt-2016-0020 27381687 

  120. 120. Xu X Han M Li T Sun W Wang D Fu B . Effective treatment of severe COVID-19 patients with tocilizumab . Proc Natl Acad Sci USA . ( 2020 ) 117 : 10970 ? 75 . 10.1073/pnas.2005615117 32350134 

  121. 121. Fu B Xu X Wei H . Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. ( 2020 ) 18 : 164 . 10.1186/s12967-020-02339-3 32290839 

  122. 122. Maes B Bosteels C De Leeuw E Declercq J Van Damme K Delporte A Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID): A structured summary of a study protocol for a randomised controlled trial . Trials ( 2020 ) 21 : 468 10.1186/s13063-020-04453-5 32493441 

  123. 123. Fuller MJ Callendret B Zhu B Freeman GJ Hasselschwert DL Satterfield W . Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1) . Proc Natl Acad Sci USA. ( 2013 ) 110 : 15001 ? 6 . 10.1073/pnas.1312772110 23980172 

  124. 124. Qin C Zhou L Hu Z Zhang S Yang S Tao Y . Dysregulation of immune response in patients with COVID-19 in Wuhan, China . Clin Infect Dis . ( 2020 ) 71 : 762 ? 8 . 10.1093/cid/ciaa248 32161940 

  125. 125. Zhang C Wang XM Li SR Twelkmeyer T Wang WH Zhang SY . NKG2A is a NK cell exhaustion checkpoint for HCV persistence . Nat Commun. ( 2019 ) 10 : 1507 . 10.1038/s41467-019-09212-y 30944315 

  126. 126. Paul LM Carlin ER Jenkins MM Tan AL Barcellona CM Nicholson CO . Dengue virus antibodies enhance Zika virus infection . Clin Transl Immunology. ( 2016 ) 5 : e117 . 10.1038/cti.2016.72 28090318 

  127. 127. Bardina SV Bunduc P Tripathi S Duehr J Frere JJ Brown JA . Enhancement of Zika virus pathogenesis by pre-existing antiflavivirus immunity . Science. ( 2017 ) 356 : 175 ? 80 . 10.1126/science.aal4365 28360135 

  128. 128. Argolo AF Feres VC Silveira LA Oliveira AC Pereira LA Junior JB . Prevalence and incidence of dengue virus and antibody placental transfer during late pregnancy in central Brazil . BMC Infect Dis. ( 2013 ) 13 : 254 . 10.1186/1471-2334-13-254 23725365 

  129. 129. Zhao J Li K Wohlford-Lenane C Agnihothram SS Fett C Zhao J . Rapid generation of a mouse model for Middle East respiratory syndrome . Proc Natl Acad Sci USA. ( 2014 ) 111 : 4970 ? 5 . 10.1073/pnas.1323279111 24599590 

  130. 130. Yip MS Leung NH Cheung CY Li PH Lee HH Daeron M . Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus . Virol J. ( 2014 ) 11 : 82 . 10.1186/1743-422X-11-82 24885320 

  131. 131. Sharma A . It is too soon to attribute ADE to COVID-19 . Microbes Infect. ( 2020 ) 22 : 158 . 10.1016/j.micinf.2020.03.005 32268188 

  132. 132. Du L He Y Zhou Y Liu S Zheng BJ Jiang S . The spike protein of SARS-CoV?a target for vaccine and therapeutic development . Nat Rev Microbiol. ( 2009 ) 7 : 226 ? 36 . 10.1038/nrmicro2090 19198616 

  133. 133. Smith CC Entwistle S Willis C Vensko S Beck W Garness J . Landscape and selection of vaccine epitopes in SARS-CoV-2 . bioRxiv [Preprint] . ( 2020 ). 10.1101/2020.06.04.135004 32577654 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로