$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Baicalin Ameliorates Cognitive Impairment and Protects Microglia from LPS-Induced Neuroinflammation via the SIRT1/HMGB1 Pathway 원문보기

Oxidative medicine and cellular longevity, v.2020, 2020년, pp.4751349 -   

Li, Yue (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  Liu, Taotao (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  Li, Yitong (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  Han, Dengyang (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  Hong, Jingshu (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  Yang, Ning (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  He, Jindan (Department of Anesthesiology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China) ,  Peng, Ronghui (Department of Anesthesiology, National Cancer Center) ,  Mi, Xinning ,  Kuang, Chongshen ,  Zhou, Yang ,  Han, Yongzheng ,  Shi, Chengmei ,  Li, Zhengqian ,  Guo, Xiangyang

Abstract AI-Helper 아이콘AI-Helper

Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control...

참고문헌 (55)

  1. 1 Evered L. Silbert B. Knopman D. S. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery―2018 Anesthesiology 2018 129 5 872 879 10.1097/ALN.0000000000002334 2-s2.0-85055165043 30325806 

  2. 2 Steinmetz J. Christensen K. B. Lund T. Lohse N. Rasmussen L. S. Long-term consequences of postoperative cognitive dysfunction Anesthesiology 2009 110 3 548 555 10.1097/ALN.0b013e318195b569 2-s2.0-62349120129 19225398 

  3. 3 Hovens I. B. Schoemaker R. G. van der Zee E. A. Absalom A. R. Heineman E. van Leeuwen B. L. Postoperative cognitive dysfunction: involvement of neuroinflammation and neuronal functioning Brain, Behavior, and Immunity 2014 38 202 210 10.1016/j.bbi.2014.02.002 2-s2.0-84898540090 

  4. 4 Cao Y. Li Z. Ma L. Isoflurane-induced postoperative cognitive dysfunction is mediated by hypoxia-inducible factor-1 α -dependent neuroinflammation in aged rats Molecular Medicine Reports 2018 17 6 7730 7736 10.3892/mmr.2018.8850 2-s2.0-85046549049 29620198 

  5. 5 Villeda S. A. Luo J. Mosher K. I. The ageing systemic milieu negatively regulates neurogenesis and cognitive function Nature 2011 477 7362 90 94 10.1038/nature10357 2-s2.0-80052410357 21886162 

  6. 6 Subramaniyan S. Terrando N. Neuroinflammation and perioperative neurocognitive disorders Anesthesia and Analgesia 2019 128 4 781 788 10.1213/ANE.0000000000004053 2-s2.0-85063278907 30883423 

  7. 7 Satomoto M. Sun Z. Adachi Y. U. Kinoshita H. Makita K. Sevoflurane preconditioning ameliorates lipopolysaccharide-induced cognitive impairment in mice Experimental Animals 2018 67 2 193 200 10.1538/expanim.17-0102 2-s2.0-85046829062 29187700 

  8. 8 Song J.-H. Lee J. W. Shim B. Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice Molecules 2013 18 12 15788 15803 10.3390/molecules181215788 2-s2.0-84890960121 24352029 

  9. 9 Zhao W. Kruse J. P. Tang Y. Jung S. Y. Qin J. Gu W. Negative regulation of the deacetylase SIRT1 by DBC1 Nature 2008 451 7178 587 590 10.1038/nature06515 2-s2.0-38749132992 18235502 

  10. 10 Wang R. Zhang Y. Li J. Zhang C. Resveratrol ameliorates spatial learning memory impairment induced by A β 1?42 in rats Neuroscience 2017 344 39 47 10.1016/j.neuroscience.2016.08.051 2-s2.0-85009154389 27600946 

  11. 11 Michan S. Li Y. Chou M. M.-H. SIRT1 is essential for normal cognitive function and synaptic plasticity The Journal of Neuroscience 2010 30 29 9695 9707 10.1523/JNEUROSCI.0027-10.2010 2-s2.0-77954855825 20660252 

  12. 12 Yu H. Zhang F. Guan X. Baicalin reverse depressive-like behaviors through regulation SIRT1-NF-kB signaling pathway in olfactory bulbectomized rats Phytotherapy Research 2019 33 5 1480 1489 10.1002/ptr.6340 2-s2.0-85062711795 30848526 

  13. 13 Yan W.-J. Wang D. B. Ren D. Q. AMPK α 1 overexpression improves postoperative cognitive dysfunction in aged rats through AMPK-Sirt1 and autophagy signaling Journal of Cellular Biochemistry 2019 120 7 11633 11641 10.1002/jcb.28443 2-s2.0-85061815790 

  14. 14 Yan J. Luo A. Gao J. The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery American Journal of Translational Research 2019 11 3 1555 1568 30972182 

  15. 15 Locatelli F. M. Kawano T. Iwata H. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rat Journal of Pharmacological Sciences 2018 137 4 395 402 10.1016/j.jphs.2018.08.006 2-s2.0-85053070154 30196020 

  16. 16 Min S.-W. Cho S. H. Zhou Y. Acetylation of tau inhibits its degradation and contributes to tauopathy Neuron 2010 67 6 953 966 10.1016/j.neuron.2010.08.044 2-s2.0-77957001697 20869593 

  17. 17 Hwang J. S. Kang E. S. Han S. G. Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPAR δ -dependent manner PeerJ 2018 6, article e4208 10.7717/peerj.4208 2-s2.0-85040020455 29312829 

  18. 18 Lotze M. T. Tracey K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal Nature Reviews Immunology 2005 5 4 331 342 10.1038/nri1594 2-s2.0-17144376810 15803152 

  19. 19 Ravizza T. Terrone G. Salamone A. High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy Brain, Behavior, and Immunity 2018 72 14 21 10.1016/j.bbi.2017.10.008 2-s2.0-85031728317 

  20. 20 Chen X. Wu S. Chen C. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF- κ B pathway following experimental traumatic brain injury Journal of Neuroinflammation 2017 14 1 p. 143 10.1186/s12974-017-0917-3 2-s2.0-85025448611 28738820 

  21. 21 Sowndhararajan K. Deepa P. Kim M. Park S. Kim S. Neuroprotective and cognitive enhancement potentials of Baicalin: a review Brain Sciences 2018 8 6 p. 104 10.3390/brainsci8060104 2-s2.0-85049199751 29891783 

  22. 22 Zhang L. Xing D. Wang W. Wang R. du L. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract Journal of Ethnopharmacology 2006 103 1 120 125 10.1016/j.jep.2005.07.013 2-s2.0-27944438159 16159703 

  23. 23 Fang J. Zhu Y. Wang H. Baicalin protects mice brain from apoptosis in traumatic brain injury model through activation of autophagy Frontiers in Neuroscience 2019 12 1006 10.3389/fnins.2018.01006 2-s2.0-85065420909 

  24. 24 Shi X. Fu Y. Zhang S. S. Ding H. Chen J. Baicalin attenuates subarachnoid hemorrhagic brain injury by modulating blood-brain barrier disruption, inflammation, and oxidative damage in mice Oxidative Medicine and Cellular Longevity 2017 2017 9 10.1155/2017/1401790 2-s2.0-85029185248 1401790 28912935 

  25. 25 Cao Y. Li G. Wang Y. F. Neuroprotective effect of baicalin on compression spinal cord injury in rats Brain Research 2010 1357 115 123 10.1016/j.brainres.2010.07.108 2-s2.0-77957258387 20708606 

  26. 26 Lu Y. Sun G. Yang F. Baicalin regulates depression behavior in mice exposed to chronic mild stress via the Rac/LIMK/cofilin pathway Biomedicine & Pharmacotherapy 2019 116 p. 109054 10.1016/j.biopha.2019.109054 2-s2.0-85066619382 31176122 

  27. 27 Chen H.-Y. Geng M. Hu Y. Z. Wang J. H. Effects of baicalin against oxidative stress injury of SH-SY5Y cells by up-regulating SIRT1 Yao xue xue bao = Acta pharmaceutica Sinica 2011 46 9 1039 1044 22121772 

  28. 28 Liu L. Dong Y. Shan X. Li L. Xia B. Wang H. Anti-depressive effectiveness of baicalin in vitro and in vivo Molecules 2019 24 2 p. 326 10.3390/molecules24020326 2-s2.0-85060106551 30658416 

  29. 29 SHAH M.-A. PARK D.-J. KANG J.-B. KIM M.-O. KOH P.-O. Baicalin attenuates lipopolysaccharide-induced neuroinflammation in cerebral cortex of mice via inhibiting nuclear factor kappa B (NF- κ B) activation Journal of Veterinary Medical Science 2019 81 9 1359 1367 10.1292/jvms.19-0281 2-s2.0-85073124181 31366818 

  30. 30 Guo L.-T. Wang S. Q. Su J. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway Journal of Neuroinflammation 2019 16 1 p. 95 10.1186/s12974-019-1474-8 2-s2.0-85065495637 31068207 

  31. 31 Kan M. H. Yang T. Fu H. Q. Pyrrolidine dithiocarbamate prevents neuroinflammation and cognitive dysfunction after endotoxemia in rats Frontiers in Aging Neuroscience 2016 8 175 10.3389/fnagi.2016.00175 2-s2.0-84983535396 

  32. 32 Fu H. Q. Yang T. Xiao W. Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats PLoS One 2014 9 8, article e106331 10.1371/journal.pone.0106331 2-s2.0-84922186834 25170959 

  33. 33 Jin X. Liu M. Y. Zhang D. F. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF- κ B signaling pathway CNS Neuroscience & Therapeutics 2019 25 5 575 590 10.1111/cns.13086 2-s2.0-85060604716 30676698 

  34. 34 Yu L. Sun Y. Cheng L. Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1 Journal of Pineal Research 2014 57 2 228 238 10.1111/jpi.12161 2-s2.0-84925835400 25052362 

  35. 35 Vorhees C. V. Williams M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory Nature Protocols 2006 1 2 848 858 10.1038/nprot.2006.116 2-s2.0-33846461062 17406317 

  36. 36 Hwang J. S. Lee W. J. Kang E. S. Ligand-activated peroxisome proliferator-activated receptor- δ and - γ inhibit lipopolysaccharide-primed release of high mobility group box 1 through upregulation of SIRT1 Cell Death & Disease 2014 5 10, article e1432 10.1038/cddis.2014.406 2-s2.0-84928008226 

  37. 37 Min S.-W. Sohn P. D. Li Y. SIRT1 deacetylates tau and reduces pathogenic tau spread in a mouse model of tauopathy The Journal of neuroscience : the official journal of the Society for Neuroscience 2018 38 15 3680 3688 10.1523/JNEUROSCI.2369-17.2018 2-s2.0-85047970809 29540553 

  38. 38 Terrando N. Yang T. Wang X. Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats Frontiers in Immunology 2016 7 p. 441 10.3389/fimmu.2016.00441 2-s2.0-84997496856 

  39. 39 Kim Y. M. Park E. J. Kim H. J. Chang K. C. Sirt1 S-nitrosylation induces acetylation of HMGB1 in LPS-activated RAW264.7 cells and endotoxemic mice Biochemical and Biophysical Research Communications 2018 501 1 73 79 10.1016/j.bbrc.2018.04.155 2-s2.0-85046640616 29680657 

  40. 40 Qi Z. Zhang Y. Qi S. Salidroside inhibits HMGB1 acetylation and release through upregulation of SirT1 during inflammation Oxidative Medicine and Cellular Longevity 2017 2017 11 10.1155/2017/9821543 2-s2.0-85043226398 9821543 29333216 

  41. 41 Chen X. Chen C. Fan S. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF- κ B pathway following experimental traumatic brain injury Journal of Neuroinflammation 2018 15 1 p. 116 10.1186/s12974-018-1151-3 2-s2.0-85045611902 29678169 

  42. 42 Banks W. A. Gray A. M. Erickson M. A. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit Journal of Neuroinflammation 2015 12 1 p. 223 10.1186/s12974-015-0434-1 2-s2.0-84947911443 26608623 

  43. 43 Li H. Wang P. Huang F. Astragaloside IV protects blood-brain barrier integrity from LPS-induced disruption via activating Nrf2 antioxidant signaling pathway in mice Toxicology and Applied Pharmacology 2018 340 58 66 10.1016/j.taap.2017.12.019 2-s2.0-85039979346 29294303 

  44. 44 Liddelow S. A. Guttenplan K. A. Clarke L. E. Neurotoxic reactive astrocytes are induced by activated microglia Nature 2017 541 7638 481 487 10.1038/nature21029 2-s2.0-85016155890 28099414 

  45. 45 Colombo E. Farina C. Astrocytes: key regulators of neuroinflammation Trends in Immunology 2016 37 9 608 620 10.1016/j.it.2016.06.006 2-s2.0-84992504899 27443914 

  46. 46 Kumar H. More S. V. Han S. D. Choi J. Y. Choi D. K. Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials Molecules 2012 17 9 10503 10539 10.3390/molecules170910503 2-s2.0-84866927567 22945029 

  47. 47 Dinda B. Dinda S. DasSharma S. Banik R. Chakraborty A. Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders European Journal of Medicinal Chemistry 2017 131 68 80 10.1016/j.ejmech.2017.03.004 2-s2.0-85014889048 28288320 

  48. 48 Tang X. Zhao Y. Zhou Z. Resveratrol mitigates sevoflurane-induced neurotoxicity by the SIRT1-dependent regulation of BDNF expression in developing mice Oxidative Medicine and Cellular Longevity 2020 2020 18 10.1155/2020/9018624 9018624 32148659 

  49. 49 Pan S. Wu Y. Pei L. BML-111 reduces neuroinflammation and cognitive impairment in mice with sepsis via the SIRT1/NF- κ B signaling pathway Frontiers in Cellular Neuroscience 2018 12 267 10.3389/fncel.2018.00267 2-s2.0-85053341587 

  50. 50 Hong-qiang H. Mang-qiao S. Fen X. Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice Physiology & Behavior 2018 195 1 8 10.1016/j.physbeh.2018.07.017 2-s2.0-85050262445 30040951 

  51. 51 Zhang Y. Anoopkumar-Dukie S. Arora D. Davey A. K. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases European Journal of Pharmacology 2020 867, article 172847 10.1016/j.ejphar.2019.172847 

  52. 52 Huang J. Liu W. Doycheva D. M. Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1 α /AMPK/Sirt1/PGC-1 α /UCP2 pathway in a rat model of neonatal HIE Free Radical Biology and Medicine 2019 141 322 337 10.1016/j.freeradbiomed.2019.07.001 2-s2.0-85068386967 31279091 

  53. 53 Li S. Sun X. Xu L. Baicalin attenuates in vivo and in vitro hyperglycemia-exacerbated ischemia/reperfusion injury by regulating mitochondrial function in a manner dependent on AMPK European Journal of Pharmacology 2017 815 118 126 10.1016/j.ejphar.2017.07.041 2-s2.0-85029459895 28743390 

  54. 54 Rabadi M. M. Xavier S. Vasko R. Kaur K. Goligorksy M. S. Ratliff B. B. High-mobility group box 1 is a novel deacetylation target of Sirtuin1 Kidney International 2015 87 1 95 108 10.1038/ki.2014.217 2-s2.0-84920288890 24940804 

  55. 55 Wei S. Gao Y. Dai X. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury American Journal of Physiology-Renal Physiology 2019 316 1 F20 F31 10.1152/ajprenal.00119.2018 2-s2.0-85058897031 30379096 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로