$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Underground Wireless Data Transmission Using 433-MHz LoRa for Agriculture 원문보기

Sensors, v.19 no.19, 2019년, pp.4232 -   

Hardie, Marcus (Tasmanian Institute of Agriculture, University of Tasmania, Hobart TAS 7000, Australia) ,  Hoyle, Donald (School of Agricultural Science, University of Tasmania, Hobart TAS 7000, Australia)

Abstract AI-Helper 아이콘AI-Helper

Wireless underground sensor networks (WUSNs) have potential for providing real-time data for agriculture and other industries without exposing sensors and communication infrastructure to damage. However, soil is a difficult environment for radio communication due to its dielectric properties and var...

참고문헌 (28)

  1. Kumar The impact of wireless sensor network in the field of precision agriculture: A review Wirel. Pers. Commun. 2018 10.1007/s11277-017-4890-z 98 685 

  2. Li State-of-the-art review for internet of things in agriculture Trans. Chin. Soc. Agric. Mach. 2018 49 1 

  3. Thakur Applicability of Wireless Sensor Networks in Precision Agriculture: A Review Wirel. Pers. Commun. 2019 10.1007/s11277-019-06285-2 107 471 

  4. Stirzaker, R. Soil Moisture Monitoring: State of Play and Barriers to Adoption, CRC for Irrigation Futures. 

  5. Dong Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems Ad Hoc Netw. 2013 10.1016/j.adhoc.2012.06.012 11 1975 

  6. Vuran Internet of underground things in precision agriculture: Architecture and technology aspects Ad Hoc Netw. 2018 10.1016/j.adhoc.2018.07.017 81 160 

  7. 10.1007/978-3-642-01341-6_12 Vuran, M.C., and Silva, A.R. (2009). Communication through Soil in Wireless Underground Sensor Networks-Theory and Practice. Sensor Networks. Signals and Communication Technology, Springer. 

  8. 10.1109/LCN.2016.040 Zaman, I., Gellhaar, M., DeDe, J., Koehler, H., and Foerster, A. (2016, January 7-10). Demo: Design and Evaluation of MoleNet for Wireless Underground Sensor Networks. Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks: Workshops (LCN Workshops), Dubai, UAE. 

  9. 10.1109/PIERS-FALL.2017.8293203 Wan, X.F., Yang, Y., Du, X., and Sardar, M.S. (2017, January 19-22). Design of propagation testnode for LoRa based wireless underground sensor networks. Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore. 

  10. 10.1109/APCAP.2017.8420657 Wan, X.F., Yang, Y., Cui, J., and Sardar, M.S. (2017, January 16-19). Lora propagation testing in soil for wireless underground sensor networks. Proceedings of the 2017 IEEE 6th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China. 

  11. 10.1109/ICCCN.2016.7568532 Salam, A., and Vuran, M.C. (2016, January 1-4). Impacts of soil type and moisture on the capacity of multi-carrier modulation in internet of underground things. Proceedings of the 2016 25th International Conference on Computer Communications and Networks, Waikoloa, HI, USA. 

  12. Zemmour Soil effects on the underground-to-aboveground communication link in ultrawideband wireless underground sensor networks IEEE Antennas Wirel. Propag. Lett. 2017 10.1109/LAWP.2016.2570298 16 218 

  13. Tan Wireless underground sensor networks: MI-based communication systems for underground applications IEEE Antennas Propag. Mag. 2015 10.1109/MAP.2015.2453917 57 74 

  14. Yu Electromagnetic Wave Propagation in Soil for Wireless Underground Sensor Networks Prog. Electromagn. Res. M 2013 10.2528/PIERM12110609 30 11 

  15. Yu Evaluation of communication in wireless underground sensor networks IOP Conf. Ser. Earth Environ. Sci. 2017 10.1088/1755-1315/69/1/012083 69 12083 

  16. 10.1109/BlackSeaCom.2013.6623414 Dong, X., and Vuran, M.C. (2013, January 3-5). Impacts of soil moisture on cognitive radio underground networks. Proceedings of the 2013 First International Black Sea Conference on Communications and Networking (BlackSeaCom), Batumi, Georgia. 

  17. 10.1109/ICSENS.2017.8233889 Liedmann, F., and Wietfeld, C. (November, January 29). SoMoS-A multidimensional radio field based soil moisture sensing system. Proceedings of the 2017 IEEE Sensors, Glasgow, UK. 

  18. 10.1109/CompComm.2017.8322701 Du, D., Zhang, H., Yang, J., and Yang, P. (2017, January 13-16). Propagation characteristics of the Underground-to-Aboveground Communication link about 2.4 GHz and 433 MHz radio wave: An empirical study in the pine forest of Guizhou Province. Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications, Chengdu, China. 

  19. 10.3390/s19020402 Abrardo, A., and Pozzebon, A. (2019). A Multi-Hop LoRa Linear Sensor Network for the Monitoring of Underground Environments: The Case of the Medieval Aqueducts in Siena, Italy. Sensors, 19. 

  20. 10.3390/jsan6030018 Sadeghioon, A.M., Chapman, D.N., Metje, N., and Anthony, C.J. (2017). A New Approach to Estimating the Path Loss in Underground Wireless Sensor Networks. J. Sens. Actuator Netw., 6. 

  21. Wan, X.F., Xing-Jing, D., Yi, Y., Jing-Wen, Z., Sardar, M.S., and Jian, C. (2017, January 4-6). Smartphone based LoRa in-soil propagation measurement for wireless underground sensor networks. Proceedings of the 2017 IEEE Conference on Antenna Measurements and Applications, Tsukuba, Japan. 

  22. Wan Research on transmission measurement system for LoRa wireless underground sensor network J. South China Agric. Univ. 2018 39 118 

  23. 10.1007/978-3-642-02085-8_17 Silva, A.R., and Vuran, M.C. (2009, January 8-10). Empirical Evaluation of Wireless Underground-to-Underground Communication in Wireless Underground Sensor Networks. Proceedings of the International Conference on Distributed Computing in Sensor Systems, 5th IEEE International Conference, Marina del Rey, CA, USA. 

  24. Stetson, L.E., and Mecham, B.Q. (2011). Chapter 3: Soil Water Plant Relations. Irrigation, Irrigation Association. [6th ed.]. 

  25. Salam Di-Sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications Comput. Netw. 2019 10.1016/j.comnet.2019.01.001 151 31 

  26. 10.3390/jsan6020007 Cattani, M., Boano, C.A., and Römer, K. (2017). An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication. J. Sens. Actuator Netw., 6. 

  27. 10.1109/EE1.2018.8385262 Malik, H., Kandler, N., Alam, M.M., Annus, I., Le Moullec, Y., and Kuusik, A. (2018, January 12-14). Evaluation of low power wide area network technologies for smart urban drainage systems. Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy. 

  28. 10.1071/9780643069817 Isbell, R.F. (2002). The Australian Soil Classification, CSIRO Publishing. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로