$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa , a commonly used biocontrol agent, and temperature-dependent control of variation 원문보기

Scientific reports, v.10 no.1, 2020년, pp.16586 -   

Lee, Younmi (Department of Plant Medicals, Andong National University, Andong, 36729 Republic of Korea) ,  Kim, Young Soo (Department of Plant Medicals, Andong National University, Andong, 36729 Republic of Korea) ,  Balaraju, Kotnala (Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729 Republic of Korea) ,  Seo, Young-Su (Department of Microbiology, Pusan National University, Pusan, 46241 Republic of Korea) ,  Park, Jungwook (Department of Microbiology, Pusan National University, Pusan, 46241 Republic of Korea) ,  Ryu, Choong-Min (Infectious Disease Research Centre, KRIBB, Daejeon, 34141 Republic of Korea) ,  Park, Seung-Hwan (Infectious Disease Research Centre, KRIBB, Daejeon, 34141 Republic of Korea) ,  Kim, Jihyun F. (Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea) ,  Kang, Seogchan (Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802 USA) ,  Jeon, Yongho (Department of Plant Medicals, Andong National University, Andong, 36729 Republic)

Abstract AI-Helper 아이콘AI-Helper

There has been a growing interest in deploying plant growth-promoting rhizobacteria (PGPR) as a biological control agent (BCA) to reduce the use of agrochemicals. Spontaneous phenotypic variation of PGPR, which causes the loss of traits crucial for biocontrol, presents a large obstacle in producing ...

참고문헌 (57)

  1. 1. Carvalho FP Pesticides, environment, and food safety Food Energy Secur. 2017 6 48 60 10.1002/fes3.108 

  2. 2. Nelson R Wiesner-Hanks T Wisser R Balint-Kurti P Navigating complexity to breed disease-resistant crops Nat. Rev. Gen. 2018 19 21 33 10.1038/nrg.2017.82 

  3. 3. Boyd LA Ridout C O’Sullivan DM Leach JE Leung H Plant-pathogen interactions: disease resistance in modern agriculture Trends Gen. 2013 29 233 240 10.1016/j.tig.2012.10.011 

  4. 4. Berg G Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture Appl. Microbiol. Biotechnol. 2009 84 11 18 10.1007/s00253-009-2092-7 19568745 

  5. 5. Kilani-feki O Ben S Dammak M Kamoun A Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease Biol. Control 2016 95 73 82 10.1016/j.biocontrol.2016.01.005 

  6. 6. Luo Y Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of its biocontrol mechanism Front. Microbiol. 2018 9 1520 10.3389/fmicb.2018.01520 30050512 

  7. 7. Chavez-Ramirez B Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: a proposal for biocontrol of phytopathogenic fungi Microbiol. Res. 2020 230 126347 10.1016/j.micres.2019.126347 31586859 

  8. 8. Kloepper JW Lifshitz R Zablotwicz RM Free-living bacterial inocula for enhancing crop productivity Trend Biotechnol. 1989 7 39 43 10.1016/0167-7799(89)90057-7 

  9. 9. Weller DM Raaijmakers JM Gardener BBM Thomashow LS Microbial populations responsible for specific soil suppressiveness to plant pathogens Annu. Rev. Phytopathol. 2002 40 309 348 10.1146/annurev.phyto.40.030402.110010 12147763 

  10. 10. Lucy M Reed E Glick BR Applications of free-living plant growth-promoting rhizobacteria Antonie Van Leeuwenhoek 2004 86 1 25 10.1023/B:ANTO.0000024903.10757.6e 15103234 

  11. 11. Preston GM Plant perceptions of plant growth-promoting Pseudomonas Phil. Trans. R. Soc. Lond. B 2004 359 907 918 10.1098/rstb.2003.1384 15306406 

  12. 12. Vessey KJ Plant growth promoting rhizobacteria as biofertilizers Plant Soil 2003 255 571 586 10.1023/A:1026037216893 

  13. 13. Chen XH Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 Nat. Biotechnol. 2007 25 1007 1014 10.1038/nbt1325 17704766 

  14. 14. Grady EN MacDonald J Liu L Richman A Yuan ZC Current knowledge and perspectives of Paenibacillus : a review Microb. Cell Fact. 2016 15 203 10.1186/s12934-016-0603-7 27905924 

  15. 15. Jeong H Choi SK Ryu CM Park SH Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health Front. Microbiol. 2019 10 467 10.3389/fmicb.2019.00467 30930873 

  16. 16. Kloepper JW Ryu CM Zhang S Induced systemic resistance and promotion of plant growth by Bacillus spp Phytopathology 2004 94 1259 1266 10.1094/PHYTO.2004.94.11.1259 18944464 

  17. 17. Palaniyandi SA Yang SH Zhang L Suh JW Effects of actinobacteria on plant disease suppression and growth promotion Appl. Microbiol. Biotechnol. 2013 97 9621 9636 10.1007/s00253-013-5206-1 24092003 

  18. 18. Aboutorabi M A review on the biological control of plant diseases using various microorganisms J. Res. Med. Dent. Sci. 2018 6 30 35 

  19. 19. Be’er A Florin E Fisher C Swinney H Payne S Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis mBio 2011 2 e00069-00011 10.1128/mBio.00069-11 21628502 

  20. 20. Mangwani N Kumari S Shukla S Rao T Das S Phenotypic switching in biofilm-forming marine bacterium Paenibacillus lautus NE3B01 Curr. Microbiol. 2014 68 648 656 10.1007/s00284-014-0525-8 24452426 

  21. 21. Broek D Bloemberg G Lugtenberg B The role of phenotypic variation in rhizosphere Pseudomonas bacteria Environ. Microbiol. 2005 7 1686 1697 10.1111/j.1462-2920.2005.00912.x 16232284 

  22. 22. Ryu CM Park CS Ogoshi A Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681 Fourth International Workshop on Plant Growth-Promoting Rhizobacteria―Present Status and Future Prospects 1997 Sapporo Nakanishi Printing 186 190 

  23. 23. Ryu CM Bacterial volatiles promote growth in Arabidopsis Proc. Natl. Acad. Sci. 2003 100 4927 4932 10.1073/pnas.0730845100 12684534 

  24. 24. Park SY Park SH Choi SK Characterization of sporulation histidine kinases of Paenibacillus polymyxa Res. Microbiol. 2012 163 272 278 10.1016/j.resmic.2012.02.003 22391390 

  25. 25. Choi SK Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis J. Bacteriol. 2009 191 3350 3358 10.1128/JB.01728-08 19304848 

  26. 26. Park SY Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene Appl. Environ. Microbiol. 2012 78 4194 4199 10.1128/AEM.07912-11 22467510 

  27. 27. Smits WK Kuipers OP Veening JW Phenotypic variation in bacteria: the role of feedback regulation Nat. Rev. Microbiol. 2006 4 259 271 10.1038/nrmicro1381 16541134 

  28. 28. Lerner A Phenotypic variation in Azospirillum brasilense exposed to starvation Environ. Microbiol. Rep. 2010 2 577 586 10.1111/j.1758-2229.2010.00149.x 23766228 

  29. 29. Vial L Phase variation has a role in Burkholderia ambifaria niche adaptation ISME J. 2010 4 49 60 10.1038/ismej.2009.95 19710710 

  30. 30. Ryu CM Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea J. Microbiol. Biotechnol. 2005 15 984 991 

  31. 31. Seul KJ Park SH Ryu CM Lee YH Ghim SY Proteome analysis of Paenibacillus polymyxa E681 affected by barley J. Microbiol. Biotechnol. 2007 17 934 944 18050911 

  32. 32. He Z Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin Appl. Environ. Microbiol. 2007 73 168 178 10.1128/AEM.02023-06 17071789 

  33. 33. Ruzheinikov SN Glycerol dehydrogenase: structure, specificity and mechanism of a family III polyol dehydrogenase Structure 2001 9 789 802 10.1016/S0969-2126(01)00645-1 11566129 

  34. 34. Xu SJ Hong SJ Choi W Kim BS Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi Plant Pathol. J. 2014 30 102 108 10.5423/PPJ.OA.05.2013.0052 25288992 

  35. 35. Han JH Shim HS Shin LH Kim KS Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and . in South Korea Plant Pathol. J. 2015 31 165 175 10.5423/PPJ.OA.03.2015.0036 26060435 

  36. 36. Kim JF Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681 J. Bacteriol. 2010 192 6103 6104 10.1128/JB.00983-10 20851896 

  37. 37. Gupta R Beg QK Lorenz P Bacterial alkaline proteases: molecular approaches and industrial applications Appl. Microbiol. Biotechnol. 2002 59 15 32 10.1007/s00253-002-0975-y 12073127 

  38. 38. Heulin T Bacillus polymyxa and Rahnella aquatilis , the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils Eur. J. Soil Biol. 1994 30 35 42 

  39. 39. Stojanovic SS Karabegovic I Beskoski V Nikolic N Lazic M Bacillus based microbial formations: optimization of the production process Hem. Ind. 2019 73 169 182 10.2298/HEMIND190214014S 

  40. 40. Debois D In situ localization and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry Proteomics 2008 8 3682 3691 10.1002/pmic.200701025 18709634 

  41. 41. Fauvart M Surface tension gradient control of bacterial swarming in colonies of Pseudomonas aeruginosa Soft Matter 2012 8 70 76 10.1039/C1SM06002C 

  42. 42. de Hoon MJ Eichenberger P Vitkup D Hierarchical evolution of the bacterial sporulation network Curr. Biol. 2010 20 R735 R745 10.1016/j.cub.2010.06.031 20833318 

  43. 43. Galperin MY Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes Environ. Microbiol. 2012 14 2870 2890 10.1111/j.1462-2920.2012.02841.x 22882546 

  44. 44. Tan IS Ramamurthi KS Spore formation in Bacillus subtilis Environ. Mcrobiol. Rep. 2014 6 212 225 10.1111/1758-2229.12130 

  45. 45. Piggot PJ Hilbert DW Sporulation of Bacillus subtilis Curr. Opin. Microbiol. 2004 7 579 586 10.1016/j.mib.2004.10.001 15556029 

  46. 46. Higgins D Dworkin J Recent progress in Bacillus subtilis sporulation FEMS Microbiol. Rev. 2012 36 131 148 10.1111/j.1574-6976.2011.00310.x 22091839 

  47. 47. Molle V The Spo0A regulon of Bacillus subtilis Mol. Microbiol. 2003 50 1683 1701 10.1046/j.1365-2958.2003.03818.x 14651647 

  48. 48. Hamon MA Stanley NR Britton RA Grossman AD Lazazzera BA Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis Mol. Microbiol. 2004 52 847 860 10.1111/j.1365-2958.2004.04023.x 15101989 

  49. 49. Siranosian KJ Grossman AD Activation of spo0A transcription by sigma H is necessary for sporulation but not for competence in Bacillus subtilis J. Bacteriol. 1994 176 3812 3815 10.1128/JB.176.12.3812-3815.1994 8206860 

  50. 50. Narula J Devi SN Fujita M Igoshin OA Ultrasensitivity of the Bacillus subtilis sporulation decision Proc. Natl. Acad. Sci. 2012 109 E3513 E3522 10.1073/pnas.1213974109 23169620 

  51. 51. Tam R Saier MH Jr Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria Microbiol. Rev. 1993 57 320 346 10.1128/MMBR.57.2.320-346.1993 8336670 

  52. 52. Tadrowski AC Evans MR Waclaw B Phenotypic switching can speed up microbial evolution Sci. Rep. 2018 8 891 10.1038/s41598-018-27095-9 29343750 

  53. 53. Poulsen LD Vinther J RNA-Seq for bacterial gene expression Curr. Protoc. Nucleic Acid Chem. 2018 73 e55 10.1002/cpnc.55 29927111 

  54. 54. Schneider E ABC transporters catalyzing carbohydrate uptake Res. Microbiol. 2001 152 303 310 10.1016/S0923-2508(01)01201-3 11421277 

  55. 55. Jeon, Y. H., Chang, S. P., Hwang, I. & Kim, Y. H. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13 , 881?891 (2003). 

  56. 56. Kim, Y. S., Balaraju, K. & Jeon, Y. H. Biological characteristics of Paenibacillus polymyxa GBR-1 involved root rot of stored Korean ginseng. J. Ginseng Res. 40 , 453?461 (2016). 

  57. 57. Son, S. H., Khan, Z., Kim, S. G. & Kim, Y. H. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107 , 524?532 (2009). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로