최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.10 no.1, 2020년, pp.16586 -
Lee, Younmi (Department of Plant Medicals, Andong National University, Andong, 36729 Republic of Korea) , Kim, Young Soo (Department of Plant Medicals, Andong National University, Andong, 36729 Republic of Korea) , Balaraju, Kotnala (Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729 Republic of Korea) , Seo, Young-Su (Department of Microbiology, Pusan National University, Pusan, 46241 Republic of Korea) , Park, Jungwook (Department of Microbiology, Pusan National University, Pusan, 46241 Republic of Korea) , Ryu, Choong-Min (Infectious Disease Research Centre, KRIBB, Daejeon, 34141 Republic of Korea) , Park, Seung-Hwan (Infectious Disease Research Centre, KRIBB, Daejeon, 34141 Republic of Korea) , Kim, Jihyun F. (Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea) , Kang, Seogchan (Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802 USA) , Jeon, Yongho (Department of Plant Medicals, Andong National University, Andong, 36729 Republic)
There has been a growing interest in deploying plant growth-promoting rhizobacteria (PGPR) as a biological control agent (BCA) to reduce the use of agrochemicals. Spontaneous phenotypic variation of PGPR, which causes the loss of traits crucial for biocontrol, presents a large obstacle in producing ...
1. Carvalho FP Pesticides, environment, and food safety Food Energy Secur. 2017 6 48 60 10.1002/fes3.108
2. Nelson R Wiesner-Hanks T Wisser R Balint-Kurti P Navigating complexity to breed disease-resistant crops Nat. Rev. Gen. 2018 19 21 33 10.1038/nrg.2017.82
3. Boyd LA Ridout C O’Sullivan DM Leach JE Leung H Plant-pathogen interactions: disease resistance in modern agriculture Trends Gen. 2013 29 233 240 10.1016/j.tig.2012.10.011
4. Berg G Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture Appl. Microbiol. Biotechnol. 2009 84 11 18 10.1007/s00253-009-2092-7 19568745
5. Kilani-feki O Ben S Dammak M Kamoun A Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease Biol. Control 2016 95 73 82 10.1016/j.biocontrol.2016.01.005
6. Luo Y Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of its biocontrol mechanism Front. Microbiol. 2018 9 1520 10.3389/fmicb.2018.01520 30050512
7. Chavez-Ramirez B Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: a proposal for biocontrol of phytopathogenic fungi Microbiol. Res. 2020 230 126347 10.1016/j.micres.2019.126347 31586859
8. Kloepper JW Lifshitz R Zablotwicz RM Free-living bacterial inocula for enhancing crop productivity Trend Biotechnol. 1989 7 39 43 10.1016/0167-7799(89)90057-7
9. Weller DM Raaijmakers JM Gardener BBM Thomashow LS Microbial populations responsible for specific soil suppressiveness to plant pathogens Annu. Rev. Phytopathol. 2002 40 309 348 10.1146/annurev.phyto.40.030402.110010 12147763
10. Lucy M Reed E Glick BR Applications of free-living plant growth-promoting rhizobacteria Antonie Van Leeuwenhoek 2004 86 1 25 10.1023/B:ANTO.0000024903.10757.6e 15103234
11. Preston GM Plant perceptions of plant growth-promoting Pseudomonas Phil. Trans. R. Soc. Lond. B 2004 359 907 918 10.1098/rstb.2003.1384 15306406
12. Vessey KJ Plant growth promoting rhizobacteria as biofertilizers Plant Soil 2003 255 571 586 10.1023/A:1026037216893
13. Chen XH Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 Nat. Biotechnol. 2007 25 1007 1014 10.1038/nbt1325 17704766
14. Grady EN MacDonald J Liu L Richman A Yuan ZC Current knowledge and perspectives of Paenibacillus : a review Microb. Cell Fact. 2016 15 203 10.1186/s12934-016-0603-7 27905924
15. Jeong H Choi SK Ryu CM Park SH Chronicle of a soil bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health Front. Microbiol. 2019 10 467 10.3389/fmicb.2019.00467 30930873
16. Kloepper JW Ryu CM Zhang S Induced systemic resistance and promotion of plant growth by Bacillus spp Phytopathology 2004 94 1259 1266 10.1094/PHYTO.2004.94.11.1259 18944464
17. Palaniyandi SA Yang SH Zhang L Suh JW Effects of actinobacteria on plant disease suppression and growth promotion Appl. Microbiol. Biotechnol. 2013 97 9621 9636 10.1007/s00253-013-5206-1 24092003
18. Aboutorabi M A review on the biological control of plant diseases using various microorganisms J. Res. Med. Dent. Sci. 2018 6 30 35
19. Be’er A Florin E Fisher C Swinney H Payne S Surviving bacterial sibling rivalry: inducible and reversible phenotypic switching in Paenibacillus dendritiformis mBio 2011 2 e00069-00011 10.1128/mBio.00069-11 21628502
20. Mangwani N Kumari S Shukla S Rao T Das S Phenotypic switching in biofilm-forming marine bacterium Paenibacillus lautus NE3B01 Curr. Microbiol. 2014 68 648 656 10.1007/s00284-014-0525-8 24452426
21. Broek D Bloemberg G Lugtenberg B The role of phenotypic variation in rhizosphere Pseudomonas bacteria Environ. Microbiol. 2005 7 1686 1697 10.1111/j.1462-2920.2005.00912.x 16232284
22. Ryu CM Park CS Ogoshi A Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681 Fourth International Workshop on Plant Growth-Promoting Rhizobacteria―Present Status and Future Prospects 1997 Sapporo Nakanishi Printing 186 190
23. Ryu CM Bacterial volatiles promote growth in Arabidopsis Proc. Natl. Acad. Sci. 2003 100 4927 4932 10.1073/pnas.0730845100 12684534
24. Park SY Park SH Choi SK Characterization of sporulation histidine kinases of Paenibacillus polymyxa Res. Microbiol. 2012 163 272 278 10.1016/j.resmic.2012.02.003 22391390
25. Choi SK Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis J. Bacteriol. 2009 191 3350 3358 10.1128/JB.01728-08 19304848
26. Park SY Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene Appl. Environ. Microbiol. 2012 78 4194 4199 10.1128/AEM.07912-11 22467510
27. Smits WK Kuipers OP Veening JW Phenotypic variation in bacteria: the role of feedback regulation Nat. Rev. Microbiol. 2006 4 259 271 10.1038/nrmicro1381 16541134
28. Lerner A Phenotypic variation in Azospirillum brasilense exposed to starvation Environ. Microbiol. Rep. 2010 2 577 586 10.1111/j.1758-2229.2010.00149.x 23766228
29. Vial L Phase variation has a role in Burkholderia ambifaria niche adaptation ISME J. 2010 4 49 60 10.1038/ismej.2009.95 19710710
32. He Z Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin Appl. Environ. Microbiol. 2007 73 168 178 10.1128/AEM.02023-06 17071789
33. Ruzheinikov SN Glycerol dehydrogenase: structure, specificity and mechanism of a family III polyol dehydrogenase Structure 2001 9 789 802 10.1016/S0969-2126(01)00645-1 11566129
36. Kim JF Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681 J. Bacteriol. 2010 192 6103 6104 10.1128/JB.00983-10 20851896
37. Gupta R Beg QK Lorenz P Bacterial alkaline proteases: molecular approaches and industrial applications Appl. Microbiol. Biotechnol. 2002 59 15 32 10.1007/s00253-002-0975-y 12073127
38. Heulin T Bacillus polymyxa and Rahnella aquatilis , the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils Eur. J. Soil Biol. 1994 30 35 42
39. Stojanovic SS Karabegovic I Beskoski V Nikolic N Lazic M Bacillus based microbial formations: optimization of the production process Hem. Ind. 2019 73 169 182 10.2298/HEMIND190214014S
40. Debois D In situ localization and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry Proteomics 2008 8 3682 3691 10.1002/pmic.200701025 18709634
41. Fauvart M Surface tension gradient control of bacterial swarming in colonies of Pseudomonas aeruginosa Soft Matter 2012 8 70 76 10.1039/C1SM06002C
42. de Hoon MJ Eichenberger P Vitkup D Hierarchical evolution of the bacterial sporulation network Curr. Biol. 2010 20 R735 R745 10.1016/j.cub.2010.06.031 20833318
43. Galperin MY Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes Environ. Microbiol. 2012 14 2870 2890 10.1111/j.1462-2920.2012.02841.x 22882546
44. Tan IS Ramamurthi KS Spore formation in Bacillus subtilis Environ. Mcrobiol. Rep. 2014 6 212 225 10.1111/1758-2229.12130
45. Piggot PJ Hilbert DW Sporulation of Bacillus subtilis Curr. Opin. Microbiol. 2004 7 579 586 10.1016/j.mib.2004.10.001 15556029
46. Higgins D Dworkin J Recent progress in Bacillus subtilis sporulation FEMS Microbiol. Rev. 2012 36 131 148 10.1111/j.1574-6976.2011.00310.x 22091839
47. Molle V The Spo0A regulon of Bacillus subtilis Mol. Microbiol. 2003 50 1683 1701 10.1046/j.1365-2958.2003.03818.x 14651647
48. Hamon MA Stanley NR Britton RA Grossman AD Lazazzera BA Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis Mol. Microbiol. 2004 52 847 860 10.1111/j.1365-2958.2004.04023.x 15101989
49. Siranosian KJ Grossman AD Activation of spo0A transcription by sigma H is necessary for sporulation but not for competence in Bacillus subtilis J. Bacteriol. 1994 176 3812 3815 10.1128/JB.176.12.3812-3815.1994 8206860
50. Narula J Devi SN Fujita M Igoshin OA Ultrasensitivity of the Bacillus subtilis sporulation decision Proc. Natl. Acad. Sci. 2012 109 E3513 E3522 10.1073/pnas.1213974109 23169620
51. Tam R Saier MH Jr Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria Microbiol. Rev. 1993 57 320 346 10.1128/MMBR.57.2.320-346.1993 8336670
52. Tadrowski AC Evans MR Waclaw B Phenotypic switching can speed up microbial evolution Sci. Rep. 2018 8 891 10.1038/s41598-018-27095-9 29343750
53. Poulsen LD Vinther J RNA-Seq for bacterial gene expression Curr. Protoc. Nucleic Acid Chem. 2018 73 e55 10.1002/cpnc.55 29927111
54. Schneider E ABC transporters catalyzing carbohydrate uptake Res. Microbiol. 2001 152 303 310 10.1016/S0923-2508(01)01201-3 11421277
55. Jeon, Y. H., Chang, S. P., Hwang, I. & Kim, Y. H. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13 , 881?891 (2003).
56. Kim, Y. S., Balaraju, K. & Jeon, Y. H. Biological characteristics of Paenibacillus polymyxa GBR-1 involved root rot of stored Korean ginseng. J. Ginseng Res. 40 , 453?461 (2016).
57. Son, S. H., Khan, Z., Kim, S. G. & Kim, Y. H. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107 , 524?532 (2009).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.