$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effects of Soil Tillage and Canopy Optimization on Grain Yield, Root Growth, and Water Use Efficiency of Rainfed Maize in Northeast China 원문보기

Agronomy, v.9 no.6, 2019년, pp.336 -   

Piao, Lin (MOA Key Laboratory of Crop Physiology and Ecology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China) ,  Li, Ming (College of Agriculture, Northeast Agriculture University, Harbin 150030, China) ,  Xiao, Jialei (College of Agriculture, Northeast Agriculture University, Harbin 150030, China) ,  Gu, Wanrong (College of Agriculture, Northeast Agriculture University, Harbin 150030, China) ,  Zhan, Ming (MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agriculture University, Wuhan 430070, China) ,  Cao, Cougui (MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agriculture University, Wuhan 430070, China) ,  Zhao, Ming (MOA Key Laboratory of Crop Physiology and Ecology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China) ,  Li, Congfeng (MOA Key Laboratory of Crop Physiology and Ecology, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract AI-Helper 아이콘AI-Helper

Elucidating the mechanisms underlying the relationships between root growth and water use efficiency is important for achieving full yield potential. We conducted a field experiment with maize under high planting density (105,000 plants ha−1) in 2013 and 2014. Four treatments were implemented...

참고문헌 (35)

  1. Zhang China’s success in increasing per capita food production J. Exp. Bot. 2011 10.1093/jxb/err132 62 3707 

  2. Zhang An experiment for the world Nature 2013 10.1038/497033a 497 33 

  3. Tokatlidis A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability Field Crops Res. 2004 10.1016/j.fcr.2003.11.013 88 103 

  4. Tokatlidis Maize hybrids less dependent on high plant densities improve resource-use efficiency in rainfed and irrigated conditions Field Crops Res. 2011 10.1016/j.fcr.2010.11.006 120 345 

  5. Piao Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize Field Crops Res. 2016 10.1016/j.fcr.2016.08.012 198 258 

  6. Cai Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize Crop. J. 2014 10.1016/j.cj.2014.04.006 2 297 

  7. Taiz, L., and Zeiger, E. (2006). Plant Physiology, Sinauer Associates Inc.. [4th ed.]. 

  8. Bengough Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits J. Exp. Bot. 2011 10.1093/jxb/erq350 62 59 

  9. Piao The impacts of climate change on water resources and agriculture in China Nature 2010 10.1038/nature09364 467 43 

  10. Wang Assessment of limiting factors and techniques prioritization for maize production in China Sci. Agric. Sin. 2010 43 1136 

  11. 10.1038/srep19605 Meng, Q., Chen, X., Lobell, D.B., Cui, Z., Zhang, Y., Yang, H., and Zhang, F. (2016). Growing sensitivity of maize to water scarcity under climate change. Sci. Rep., 6. 

  12. Pages Links between root developmental traits and foraging performance Plant Cell Environ. 2011 10.1111/j.1365-3040.2011.02371.x 34 1749 

  13. Smith Root system architecture: Insights from Arabidopsis and cereal crops Introduction Philos. Trans. R. Soc. B Biol. Sci. 2012 10.1098/rstb.2011.0234 367 1441 

  14. Costa Root morphology of contrasting maize genotypes Agron. J. 2002 10.2134/agronj2002.9600 94 96 

  15. Sharp Growth of the maize primary root at low water potentials: I Spatial distribution of expansive growth. Plant Physiol. 1988 87 50 

  16. Xu Topsoil properties as affected by tillage practices in North China Soil Tillage Res. 2001 10.1016/S0167-1987(01)00167-2 60 11 

  17. Amato Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure Crop. Sci. 2002 42 773 

  18. Liu Effects of different tillage managements on soil physical properties in dryland Agric. Res. Arid Areas 2010 28 65 

  19. Guan Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize Field Crops Res. 2014 10.1016/j.fcr.2013.12.015 157 89 

  20. 10.1371/journal.pone.0129231 Wang, X., Zhou, B., Sun, X., Yue, Y., Ma, W., and Zhao, M. (2015). Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status. PLoS ONE, 10. 

  21. Martin Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: Nitrogen availability Plant Physiol. 2002 10.1104/pp.010475 128 472 

  22. Gersani Root proliferation and seed yield in response to spatial heterogeneity of below-ground competition New Phytol. 2005 10.1111/j.1469-8137.2005.01520.x 168 401 

  23. (2017, December 22). China Meteorological Administration, Available online: http://www.cma.gov.cn. 

  24. 10.1007/978-3-642-67282-8 Böhm, W. (1979). Methods of Studying Root Systems, Springer Science & Business Media. 

  25. Plana Spatial root distribution of apricot trees in different soil tillage practices Plant Soil 2005 10.1007/s11104-004-4781-4 272 211 

  26. Hou Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China Field Crops Res. 2012 10.1016/j.fcr.2011.12.021 129 7 

  27. Wang Effects of subsoil bulk density on late growth stage photosynthetic characteristics and grain yield of maize (Zea mays L.) Chin. J. Appl. Ecol. 2008 19 787 

  28. Trouwborst The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy Physiol. Plant 2010 10.1111/j.1399-3054.2009.01333.x 138 289 

  29. Wu Effect of planting geometries on canopy structure of spring maize under high-density condition in North China Plain Chin. J. Ecol. 2015 34 18 

  30. Jiao Effects of plant growth regulators on canopy structure in spring maize under different plant densities J. Maize Sci. 2014 22 51 

  31. Hammer Can Changes in Canopy and/or Root System Architecture Explain Historical Maize Yield Trends in the US Corn Belt? Crop. Sci. 2009 10.2135/cropsci2008.03.0152 49 299 

  32. Lipiec Effects of soil compaction on root elongation and anatomy of different cereal plant species Soil Tillage Res. 2012 10.1016/j.still.2012.01.013 121 74 

  33. Mi Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems Sci. China Life Sci. 2010 10.1007/s11427-010-4097-y 53 1369 

  34. King Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum Ann. Bot. 2003 10.1093/aob/mcg033 91 383 

  35. Lynch Root Architecture and Plant Productivity Plant Physiol. 1995 10.1104/pp.109.1.7 109 7 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로