최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Remote sensing, v.12 no.20, 2020년, pp.3365 -
Choi, Byung-Kyu (Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 34055, Korea) , Roh, Kyoung-Min (Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 34055, Korea) , Ge, Haibo (College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China) , Ge, Maorong (Department of Geodesy, GeoForshungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany) , Joo, Jung-Min (Satellite Navigation Division, Korea Aerospace Research Institute, Daejeon 34133, Korea) , Heo, Moon Beom (Satellite Navigation Division, Korea Aerospace Research Institute, Daejeon 34133, Korea)
The Korean government has a plan to build a new regional satellite navigation system called the Korean Positioning System (KPS). The initial KPS constellation is designed to consist of seven satellites, which include three geostationary Earth orbit (GEO) satellites and four inclined geosynchronous o...
Zein GPS tracking system for autonomous vehicles Alex. Eng. J. 2018 10.1016/j.aej.2017.12.002 57 3127
Tavella Precise time scales and navigation systems: Mutual benefits of timekeeping and positioning Satell. Navi. 2020 1 1
10.3390/ijgi9040220 Dabove, P., Pietra, V.D., and Piras, M. (2020). GNSS Positioning Using Mobile Devices with the Android Operating System. Int. J. Geo Inf., 9.
Bevis GPS meteorology: Remote sensing of atmospheric water vapor using GPS J. Geophys. Res. 1992 97 787
Juan High resolution TEC monitoring method using permanent ground GPS receivers Geophys. Res. Lett. 1997 10.1029/97GL01591 24 1643
Kato Real-time observation of tsunami by RTK-GPS Earth Planets Space 2000 10.1186/BF03352292 52 841
Larson GPS seismology J. Geod. 2009 10.1007/s00190-008-0233-x 83 227
Hein Status, perspectives and trends of satellite navigation Satell. Navi. 2020 1 11
CSNO (2017, September 12). Beidou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal (Version 2.1), Available online: http://www.beidou.gov.cn/xt/gfxz/201710/P020171202693088949056.pdf.
CSNO (2020, August 03). Beidou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2b (Version 1.0), Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/202008/P020200803544811195696.pdf.
Yang Progress, contribution and challenges of compass/Beidou satellite navigation system Acta Geod. Cartogr. Sin. 2010 39 1
Zaminpardaz IRNSS/NavIC and GPS: A Single and Dual System L5 Analysis J. Geod. 2017 10.1007/s00190-016-0996-4 91 915
Safoora Teunissen. Australia-first high-precision positioning results with new Japanese QZSS regional satellite system GPS Solut. 2018 10.1007/s10291-018-0763-5 22 101
10.3390/s20061547 Ye, H., Jing, X., Liu, L., Wang, M., Hao, S., Lang, X., and Yu, B. (2020). Analysis of Quasi-Zenith Satellite System Signal Acquisition and Multiplexing Characteristics in China Area. Sensors, 20.
Wu Performance Evaluation of GPS Augmentation using Quasi-Zenith Satellite System IEEE Trans. Aero. Elec. Syst. 2004 10.1109/TAES.2004.1386878 40 1249
10.3390/rs10070984 Ge, H., LI, B., Ge, M., Zang, N., Nie, L., Shen, Y., and Schuh, H. (2018). Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS). Remote Sens., 10.
Li LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services Adv. Space Res. 2019 10.1016/j.asr.2018.08.017 63 73
Montenbruck Enhanced solar radiation pressure modeling for Galileo satellites J. Geod. 2015 10.1007/s00190-014-0774-0 89 283
Prange CODE’s five-system orbit and clock solution-The challenges of multi-GNSS data analysis J. Geod. 2017 10.1007/s00190-016-0968-8 91 345
Grimes, J.G. (2008). Global Positioning System Standard Positioning Service Performance Standard, DoD. [4th ed.].
Liu PANDA software and its preliminary result of positioning and orbit determination Wuhan Univ. J. Nat. Sci. 2003 10.1007/BF02899825 8 603
Blewitt Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km J. Geophys. Res. 1989 10.1029/JB094iB08p10187 94 10187
Dow The International GNSS Service in a changing landscape of Global Navigation Satellite Systems J. Geod. 2009 10.1007/s00190-008-0300-3 83 191
Saastamoinen Atmospheric correction for the troposphere and stratosphere in radio ranging satellites Use Artific. Satell. Geod. 1972 15 247
Boehm Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data Geophys. Res. Lett. 2006 10.1029/2005GL025546 33 L07304
Kouba Precise Point Positioning Using IGS Orbit and Clock Products GPS Solut. 2001 10.1007/PL00012883 5 12
Pawlowicz, R. (2020, January 01). M_Map: A mapping Package for MATLAB. Computer Software. Available online: http://www.eoas.ubc.ca/~rich/map.html.
Förste, C., Bruinsma, S., Shako, R., Flechtner, F., Dahle, C., Abrikosov, O., Marty, J., Lemoine, J., Neumayer, K., and Biancale, R. (2011, January 5-9). EIGEN-6-The New Combined Global Gravity Field Model including GOCE Data from the Collaboration of GFZ-Potsdam and GRGS-Toulouse. Proceedings of the AGU Fall Meeting 2011, San Francisco, CA, USA.
Standish, E.M. (1998, August 26). JPL Planetary and Lunar Ephemerides DE405/LE405, Available online: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf.
10.1017/S1743921309990093 Petit, G., and Luzum, B. (2010, December 16). IERS conventions 2010, IERS Technical Note No.36. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html.
Beutler Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results Manuscr. Geod. 1994 19 367
Prange An empirical solar radiation pressure model for satellites moving in the orbit-normal mode Adv. Space Res. 2020 10.1016/j.asr.2019.07.031 65 235
Wu Effects of antenna orientation on GPS carrier phase Manusc. Geod. 1993 18 91
Geng Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously J. Geod. 2017 10.1007/s00190-016-0969-7 91 361
Ge, M., Zhang, H., Jia, X., Song, S., and Wickert, J. (2012, January 17-21). What is Achievable with Current Compass Constellation? In Proceedings of the ION GNSS 2012, Nashville, TN, USA.
10.3390/s18010135 Xu, X., Li, M., Li, W., and Liu, J. (2018). Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning. Sensors, 18.
Li LEO-BDS-GPS integrated precise orbit modeling using FengYun-3D, FengYun-3C onboard and ground observations GPS Solut. 2020 10.1007/s10291-020-0962-8 24 48
10.3390/s17061363 Shi, J., Wang, G., Han, X., and Guo, J. (2017). Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning. Sensors, 17.
Montenbruck Broadcast versus precise ephemerides: A multi-GNSS perspective GPS Solut. 2014 10.1007/s10291-014-0390-8 19 321
Montenbruck Multi-GNSS signal-in-space range error assessment-Methodology and results Adv. Space Res. 2018 10.1016/j.asr.2018.03.041 61 3020
10.3390/s19122767 Ouyang, C., Shi, J., Shen, Y., and Li, L. (2019). Six-Year BDS-2 Broadcast Navigation Message Analysis from 2013 to 2018: Availability, Anomaly, and SIS UREs Assessment. Sensors, 19.
10.3390/rs10010084 Kazmierski, K., Hadas, T., and Sośnica, K. (2018). Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sens., 10.
10.3390/s19112580 Zhang, S., Du, S., Li, W., and Wang, G. (2019). Evaluation of the GPS Precise Orbit and Clock Corrections from MADOCA Real-Time Products. Sensors, 19.
Satirpod GPS single point positioning with SA off: How accurate can we get? Survey Rev. 2001 10.1179/sre.2001.36.282.255 36 255
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.