$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Performance Analysis of the Korean Positioning System Using Observation Simulation 원문보기

Remote sensing, v.12 no.20, 2020년, pp.3365 -   

Choi, Byung-Kyu (Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 34055, Korea) ,  Roh, Kyoung-Min (Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 34055, Korea) ,  Ge, Haibo (College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China) ,  Ge, Maorong (Department of Geodesy, GeoForshungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany) ,  Joo, Jung-Min (Satellite Navigation Division, Korea Aerospace Research Institute, Daejeon 34133, Korea) ,  Heo, Moon Beom (Satellite Navigation Division, Korea Aerospace Research Institute, Daejeon 34133, Korea)

Abstract AI-Helper 아이콘AI-Helper

The Korean government has a plan to build a new regional satellite navigation system called the Korean Positioning System (KPS). The initial KPS constellation is designed to consist of seven satellites, which include three geostationary Earth orbit (GEO) satellites and four inclined geosynchronous o...

참고문헌 (46)

  1. Zein GPS tracking system for autonomous vehicles Alex. Eng. J. 2018 10.1016/j.aej.2017.12.002 57 3127 

  2. Bakula An approach to reliable rapid static GNSS surveying Survey Rev. 2012 10.1179/1752270611Y.0000000038 44 265 

  3. Tavella Precise time scales and navigation systems: Mutual benefits of timekeeping and positioning Satell. Navi. 2020 1 1 

  4. 10.3390/ijgi9040220 Dabove, P., Pietra, V.D., and Piras, M. (2020). GNSS Positioning Using Mobile Devices with the Android Operating System. Int. J. Geo Inf., 9. 

  5. Bevis GPS meteorology: Remote sensing of atmospheric water vapor using GPS J. Geophys. Res. 1992 97 787 

  6. Juan High resolution TEC monitoring method using permanent ground GPS receivers Geophys. Res. Lett. 1997 10.1029/97GL01591 24 1643 

  7. Kato Real-time observation of tsunami by RTK-GPS Earth Planets Space 2000 10.1186/BF03352292 52 841 

  8. Larson GPS seismology J. Geod. 2009 10.1007/s00190-008-0233-x 83 227 

  9. Hein Status, perspectives and trends of satellite navigation Satell. Navi. 2020 1 11 

  10. CSNO (2017, September 12). Beidou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal (Version 2.1), Available online: http://www.beidou.gov.cn/xt/gfxz/201710/P020171202693088949056.pdf. 

  11. CSNO (2020, August 03). Beidou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2b (Version 1.0), Available online: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/202008/P020200803544811195696.pdf. 

  12. Yang Progress, contribution and challenges of compass/Beidou satellite navigation system Acta Geod. Cartogr. Sin. 2010 39 1 

  13. Zaminpardaz IRNSS/NavIC and GPS: A Single and Dual System L5 Analysis J. Geod. 2017 10.1007/s00190-016-0996-4 91 915 

  14. Safoora Teunissen. Australia-first high-precision positioning results with new Japanese QZSS regional satellite system GPS Solut. 2018 10.1007/s10291-018-0763-5 22 101 

  15. 10.3390/s20061547 Ye, H., Jing, X., Liu, L., Wang, M., Hao, S., Lang, X., and Yu, B. (2020). Analysis of Quasi-Zenith Satellite System Signal Acquisition and Multiplexing Characteristics in China Area. Sensors, 20. 

  16. Wu Performance Evaluation of GPS Augmentation using Quasi-Zenith Satellite System IEEE Trans. Aero. Elec. Syst. 2004 10.1109/TAES.2004.1386878 40 1249 

  17. 10.3390/rs10070984 Ge, H., LI, B., Ge, M., Zang, N., Nie, L., Shen, Y., and Schuh, H. (2018). Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS). Remote Sens., 10. 

  18. Li LEO enhanced Global Navigation Satellite System (LeGNSS) for real-time precise positioning services Adv. Space Res. 2019 10.1016/j.asr.2018.08.017 63 73 

  19. Montenbruck Enhanced solar radiation pressure modeling for Galileo satellites J. Geod. 2015 10.1007/s00190-014-0774-0 89 283 

  20. Prange CODE’s five-system orbit and clock solution-The challenges of multi-GNSS data analysis J. Geod. 2017 10.1007/s00190-016-0968-8 91 345 

  21. Grimes, J.G. (2008). Global Positioning System Standard Positioning Service Performance Standard, DoD. [4th ed.]. 

  22. Liu PANDA software and its preliminary result of positioning and orbit determination Wuhan Univ. J. Nat. Sci. 2003 10.1007/BF02899825 8 603 

  23. Blewitt Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km J. Geophys. Res. 1989 10.1029/JB094iB08p10187 94 10187 

  24. Dow The International GNSS Service in a changing landscape of Global Navigation Satellite Systems J. Geod. 2009 10.1007/s00190-008-0300-3 83 191 

  25. Saastamoinen Atmospheric correction for the troposphere and stratosphere in radio ranging satellites Use Artific. Satell. Geod. 1972 15 247 

  26. Boehm Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data Geophys. Res. Lett. 2006 10.1029/2005GL025546 33 L07304 

  27. Kouba Precise Point Positioning Using IGS Orbit and Clock Products GPS Solut. 2001 10.1007/PL00012883 5 12 

  28. Pawlowicz, R. (2020, January 01). M_Map: A mapping Package for MATLAB. Computer Software. Available online: http://www.eoas.ubc.ca/~rich/map.html. 

  29. Förste, C., Bruinsma, S., Shako, R., Flechtner, F., Dahle, C., Abrikosov, O., Marty, J., Lemoine, J., Neumayer, K., and Biancale, R. (2011, January 5-9). EIGEN-6-The New Combined Global Gravity Field Model including GOCE Data from the Collaboration of GFZ-Potsdam and GRGS-Toulouse. Proceedings of the AGU Fall Meeting 2011, San Francisco, CA, USA. 

  30. Standish, E.M. (1998, August 26). JPL Planetary and Lunar Ephemerides DE405/LE405, Available online: ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de405.iom.pdf. 

  31. 10.1017/S1743921309990093 Petit, G., and Luzum, B. (2010, December 16). IERS conventions 2010, IERS Technical Note No.36. Available online: https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html. 

  32. Beutler Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results Manuscr. Geod. 1994 19 367 

  33. 10.1007/978-3-642-00860-3_41 Bizouard, C., and Gambis, D. (2011, February 01). The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2008. IERS Notice. Available online: http://hpiers.obspm.fr/iers/eop/eopc04. 

  34. Prange An empirical solar radiation pressure model for satellites moving in the orbit-normal mode Adv. Space Res. 2020 10.1016/j.asr.2019.07.031 65 235 

  35. Wu Effects of antenna orientation on GPS carrier phase Manusc. Geod. 1993 18 91 

  36. Geng Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously J. Geod. 2017 10.1007/s00190-016-0969-7 91 361 

  37. Ge, M., Zhang, H., Jia, X., Song, S., and Wickert, J. (2012, January 17-21). What is Achievable with Current Compass Constellation? In Proceedings of the ION GNSS 2012, Nashville, TN, USA. 

  38. 10.3390/s18010135 Xu, X., Li, M., Li, W., and Liu, J. (2018). Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning. Sensors, 18. 

  39. Li LEO-BDS-GPS integrated precise orbit modeling using FengYun-3D, FengYun-3C onboard and ground observations GPS Solut. 2020 10.1007/s10291-020-0962-8 24 48 

  40. 10.3390/s17061363 Shi, J., Wang, G., Han, X., and Guo, J. (2017). Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning. Sensors, 17. 

  41. Montenbruck Broadcast versus precise ephemerides: A multi-GNSS perspective GPS Solut. 2014 10.1007/s10291-014-0390-8 19 321 

  42. Montenbruck Multi-GNSS signal-in-space range error assessment-Methodology and results Adv. Space Res. 2018 10.1016/j.asr.2018.03.041 61 3020 

  43. 10.3390/s19122767 Ouyang, C., Shi, J., Shen, Y., and Li, L. (2019). Six-Year BDS-2 Broadcast Navigation Message Analysis from 2013 to 2018: Availability, Anomaly, and SIS UREs Assessment. Sensors, 19. 

  44. 10.3390/rs10010084 Kazmierski, K., Hadas, T., and Sośnica, K. (2018). Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sens., 10. 

  45. 10.3390/s19112580 Zhang, S., Du, S., Li, W., and Wang, G. (2019). Evaluation of the GPS Precise Orbit and Clock Corrections from MADOCA Real-Time Products. Sensors, 19. 

  46. Satirpod GPS single point positioning with SA off: How accurate can we get? Survey Rev. 2001 10.1179/sre.2001.36.282.255 36 255 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로