최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Communications biology, v.3 no.1, 2020년, pp.630 -
Ku, Jayoung (Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Kim, Ryul (Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea) , Kim, Dongchan (Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea) , Kim, Daeyoon (Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea) , Song, Seulki (Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea) , Lee, Keonyong (Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Lee, Namseok (Department of Chemical and Biomolecular Engineering and KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Repu) , Kim, MinA , Yoon, Sung-Soo , Kwon, Nam Hoon , Kim, Sunghoon , Kim, Yoosik , Koh, Youngil
Aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) is a non-enzymatic component required for the multi-tRNA synthetase complex. While exon 2 skipping alternatively spliced variant of AIMP2 (AIMP2-DX2) compromises AIMP2 activity and is associated with carcinogenesis, its clinical...
1. Kim JY p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance Proc. Natl Acad. Sci. USA 2002 99 7912 7916 10.1073/pnas.122110199 12060739
2. Kim S You S Hwang D Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping Nat. Rev. Cancer 2011 11 708 718 10.1038/nrc3124 21941282
3. Choi JW Um JY Kundu JK Surh YJ Kim S Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis Carcinogenesis 2009 30 1638 1644 10.1093/carcin/bgp170 19622630
4. Han JM AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53 Proc. Natl Acad. Sci. USA 2008 105 11206 11211 10.1073/pnas.0800297105 18695251
5. Choi JW AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2 J. Cell Sci. 2009 122 2710 2715 10.1242/jcs.049767 19584093
6. Yum MK AIMP2 controls intestinal stem cell compartments and tumorigenesis by modulating Wnt/beta-catenin signaling Cancer Res. 2016 76 4559 4568 10.1158/0008-5472.CAN-15-3357 27262173
7. Choi JW Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis PLoS Genet. 2011 7 e1001351 10.1371/journal.pgen.1001351 21483803
8. Choi JW Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer J. Mol. Cell Biol. 2012 4 164 173 10.1093/jmcb/mjs018 22532625
9. Jo SM Rapid detection of exon 2-deleted AIMP2 mutation as a potential biomarker for lung cancer by molecular beacons Biosens. Bioelectron. 2013 46 142 149 10.1016/j.bios.2013.02.037 23537880
10. Schwarzacher T DNA, chromosomes, and in situ hybridization Genome 2003 46 953 962 10.1139/g03-119 14663512
11. Wang H Dual-color ultrasensitive bright-field RNA in situ hybridization with RNAscope Methods Mol. Biol. 2014 1211 139 149 10.1007/978-1-4939-1459-3_12 25218383
12. Han JM Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation J. Biol. Chem. 2006 281 38663 38667 10.1074/jbc.M605211200 17062567
13. Prokocimer M Molchadsky A Rotter V Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy Blood 2017 130 699 712 10.1182/blood-2017-02-763086 28607134
14. Tessoulin B p53 dysregulation in B-cell malignancies: more than a single gene in the pathway to hell Blood Rev. 2017 31 251 259 10.1016/j.blre.2017.03.001 28284458
15. Tan G Apoptosis induced by low-dose paclitaxel is associated with p53 upregulation in nasopharyngeal carcinoma cells Int. J. Cancer 2002 97 168 172 10.1002/ijc.1591 11774260
16. Wahl AF Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis Nat. Med. 1996 2 72 79 10.1038/nm0196-72 8564846
17. Grandela C Pera MF Grimmond SM Kolle G Wolvetang EJ p53 is required for etoposide-induced apoptosis of human embryonic stem cells Stem Cell Res. 2007 1 116 128 10.1016/j.scr.2007.10.003 19383392
18. Jamil S Lam I Majd M Tsai SH Duronio V Etoposide induces cell death via mitochondrial-dependent actions of p53 Cancer Cell Int. 2015 15 79 10.1186/s12935-015-0231-z 26251638
19. Kong B Wang Q Fung E Xue K Tsang BK p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers J. Biol. Chem. 2014 289 27134 27145 10.1074/jbc.M114.594812 25112877
20. Schmid JO Cancer cells cue the p53 response of cancer-associated fibroblasts to cisplatin Cancer Res. 2012 72 5824 5832 10.1158/0008-5472.CAN-12-1201 22962266
21. Mody MD Gill HS Higgins KA Saba NF Kota VK Complete remission of acute myeloid leukemia following cisplatin based concurrent therapy with radiation for squamous cell laryngeal cancer Case Rep. Hematol. 2016 2016 8581421 27127664
22. Lee YG Effective salvage therapy for high-risk relapsed or refractory acute myeloid leukaemia with cisplatin in combination with high-dose cytarabine and etoposide Eur. J. Haematol. 2014 92 478 484 10.1111/ejh.12274 24460733
23. Kumar S Tchounwou PB Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells Oncotarget 2015 6 40734 40746 10.18632/oncotarget.5754 26486083
24. Seiter K Katragadda S Ponce D Rasul M Ahmed N Temozolomide and cisplatin in relapsed/refractory acute leukemia J. Hematol. Oncol. 2009 2 21 10.1186/1756-8722-2-21 19463179
25. Dohner H Weisdorf DJ Bloomfield CD Acute myeloid leukemia N. Engl. J. Med. 2015 373 1136 1152 10.1056/NEJMra1406184 26376137
26. Sakamoto KM Targeting novel signaling pathways for resistant acute myeloid leukemia Mol. Genet. Metab. 2015 114 397 402 10.1016/j.ymgme.2014.11.017 25533111
27. Lee HS Chemical suppression of an oncogenic splicing variant of AIMP2 induces tumour regression Biochem. J. 2013 454 411 416 10.1042/BJ20130550 23815603
28. Oh AY Inhibiting DX2-p14/ARF interaction exerts antitumor effects in lung cancer and delays tumor progression Cancer Res. 2016 76 4791 4804 10.1158/0008-5472.CAN-15-1025 27302160
29. Won YS Lee SW Selective regression of cancer cells expressing a splicing variant of AIMP2 through targeted RNA replacement by trans-splicing ribozyme J. Biotechnol. 2012 158 44 49 10.1016/j.jbiotec.2012.01.006 22285955
30. Cripe LD Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML): signaling to multidrug-efflux and hyperproliferation Leukemia 2002 16 799 812 10.1038/sj.leu.2402457 11986940
31. Platanias LC Map kinase signaling pathways and hematologic malignancies Blood 2003 101 4667 4679 10.1182/blood-2002-12-3647 12623839
32. Lee HJ Daver N Kantarjian HM Verstovsek S Ravandi F The role of JAK pathway dysregulation in the pathogenesis and treatment of acute myeloid leukemia Clin. Cancer Res. 2013 19 327 335 10.1158/1078-0432.CCR-12-2087 23209034
33. Ikezoe T Expression of p-JAK2 predicts clinical outcome and is a potential molecular target of acute myelogenous leukemia Int. J. Cancer 2011 129 2512 2521 10.1002/ijc.25910 21207414
34. Yatabe Y A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung cancer J. Mol. Diagn. 2006 8 335 341 10.2353/jmoldx.2006.050104 16825506
35. Martinez AE Lin L Dunphy CH Grading of follicular lymphoma: comparison of routine histology with immunohistochemistry Arch. Pathol. Lab. Med. 2007 131 1084 1088 17616995
36. Kim D TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions Genome Biol. 2013 14 R36 10.1186/gb-2013-14-4-r36 23618408
37. Wilks C The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data Database 2014 2014 bau093 10.1093/database/bau093 25267794
38. Anders S Pyl PT Huber W HTSeq?a Python framework to work with high-throughput sequencing data Bioinformatics 2015 31 166 169 10.1093/bioinformatics/btu638 25260700
39. Love MI Huber W Anders S Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 2014 15 550 10.1186/s13059-014-0550-8 25516281
40. Luo W Friedman MS Shedden K Hankenson KD Woolf PJ GAGE: generally applicable gene set enrichment for pathway analysis BMC Bioinformatics 2009 10 161 10.1186/1471-2105-10-161 19473525
41. Kanehisa M Goto S Kawashima S Okuno Y Hattori M The KEGG resource for deciphering the genome Nucleic Acids Res. 2004 32 D277 D280 10.1093/nar/gkh063 14681412
42. Grimwade D Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials Blood 2010 116 354 365 10.1182/blood-2009-11-254441 20385793
43. Li H The sequence alignment/map format and SAMtools Bioinformatics 2009 25 2078 2079 10.1093/bioinformatics/btp352 19505943
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.