$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electrochemical Synergies of Heterostructured Fe2O3-MnO Catalyst for Oxygen Evolution Reaction in Alkaline Water Splitting 원문보기

Nanomaterials, v.9 no.10, 2019년, pp.1486 -   

Kim, Junyeong (Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea) ,  Heo, Jun Neoung (Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea) ,  Do, Jeong Yeon (Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea) ,  Chava, Rama Krishna (Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea) ,  Kang, Misook (Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea)

Abstract AI-Helper 아이콘AI-Helper

For efficient electrode development in an electrolysis system, Fe2O3, MnO, and heterojunction Fe2O3-MnO materials were synthesized via a simple sol-gel method. These particles were coated on a Ni-foam (NF) electrode, and the resulting material was used as an electrode to be used during an oxygen evo...

참고문헌 (42)

  1. Hisatomi Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts Nat. Catal. 2019 10.1038/s41929-019-0242-6 2 387 

  2. Yan Anion-Modulated HER and OER Activities of 3D Ni-V-Based Interstitial Compound Heterojunctions for High-Efficiency and Stable Overall Water Splitting Adv. Mater. 2019 10.1002/adma.201901174 31 1901174 

  3. Bu A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting J. Mater. Chem. A 2019 10.1039/C9TA02551K 7 12325 

  4. Roger Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting Nat. Rev. Chem. 2017 10.1038/s41570-016-0003 1 0003 

  5. Hou Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting Energy Environ. Sci. 2016 10.1039/C5EE03440J 9 478 

  6. Wang Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting Adv. Sci. 2017 10.1002/advs.201600371 4 160037 

  7. Liu NiO as a Bifunctional Promoter for RuO2 toward Superior Overall Water Splitting Small (Weinheim an der Bergstrasse Germany) 2018 10.1002/smll.201704073 14 1704073 

  8. Yu High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting Nat. Commun. 2018 10.1038/s41467-018-04746-z 9 2551 

  9. Suen Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives Chem. Soc. Rev. 2017 10.1039/C6CS00328A 46 337 

  10. McCrory Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction J. Am. Chem. Soc. 2013 10.1021/ja407115p 135 16977 

  11. Cheng Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction Angew. Chem. Int. Ed. 2014 10.1002/anie.201402315 53 7860 

  12. Davodi Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: Toward Design of Advanced Electrocatalyst for Full Water Splitting ACS Appl. Mater. Interfaces 2018 10.1021/acsami.8b08830 10 31300 

  13. Luo Fe3O4@NiFexOy Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte ACS Appl. Mater. Interfaces 2016 10.1021/acsami.6b09888 8 29461 

  14. Zaho Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction Chem. Commun. 2016 10.1039/C6CC03854A 52 9228 

  15. Lyons Mechanism of oxygen reactions at porous oxideelectrodes. Part 2-Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution Phys. Chem. Chem. Phys. 2011 10.1039/c0cp02875d 13 5314 

  16. Sadaf Stainless steel made to rust: A robust water-splitting catalyst with benchmark characteristics Energy Environ. Sci. 2015 10.1039/C5EE01601K 8 2685 

  17. Chevrier X20CoCrWMo10-9//Co3O4: A metal-ceramic composite with unique efficiency values for water-splitting in the neutral regime Energy Environ. Sci. 2016 10.1039/C6EE01304J 9 2609 

  18. Chatenet Steel: The Resurrection of a Forgotten Water-Splitting Catalyst ACS Energy Lett. 2018 33 574 

  19. Wu Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting Nano Energy 2018 10.1016/j.nanoen.2017.11.045 44 353 

  20. Zhu In Situ Grown Epitaxial Heterojunction Exhibits High-Performance Electrocatalytic Water Splitting Adv. Master. 2018 30 170551 

  21. Ouyang Heterostructures Composed of N-Doped Carbon Nanotubes Encapsulating Cobalt and β-Mo2C Nanoparticles as Bifunctional Electrodes for Water Splitting Angew. Chem. Int. Ed. 2019 10.1002/anie.201814262 58 4923 

  22. Li Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors NPG Asia Mater. 2015 10.1038/am.2015.11 7 165 

  23. Nagamuthu Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode Appl. Surf. Sci. 2016 10.1016/j.apsusc.2016.08.072 390 202 

  24. Peng Green fabrication of magnetic recoverable graphene/MnFe2O4 hybrids for efficient decomposition of methylene blue and the Mn/Fe redox synergetic mechanism RSC Adv. 2016 10.1039/C6RA24320G 6 104549 

  25. Choi Facilitating hole transfer on electrochemically synthesized p-type CuAlO2 films for efficient solar hydrogen production from water J. Master. Chem. A 2017 10.1039/C7TA01919J 5 10165 

  26. Qiu MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries Mater. Lett. 2012 10.1016/j.matlet.2012.06.045 84 9 

  27. Tadic Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method Appl. Surf. Sci. 2014 10.1016/j.apsusc.2014.08.193 320 183 

  28. Shalom Nickel nitride as an efficient electrocatalyst for water splitting J. Mater. Chem. A 2015 10.1039/C5TA00078E 3 8171 

  29. Huang Unveiling the active sites of Ni-Fe phosphide/metaphosphate for efficient oxygen evolution under alkaline conditions Chem. Commun. 2019 10.1039/C9CC03024G 55 7687 

  30. Ullah In situ growth of M-MO (M = Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER Electrochim. Acta 2019 10.1016/j.electacta.2018.12.053 298 163 

  31. Urso Ni(OH)2@Ni core-shell nanochains as low-cost high-rate performance electrode for energy storage applications Sci. Rep. 2019 10.1038/s41598-019-44285-1 9 7736 

  32. Moosavifard 3D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials RSC Adv. 2014 10.1039/C4RA09118C 4 52555 

  33. Li Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis Chem. Soc. Rev. 2013 10.1039/c3cs60067j 42 6593 

  34. Liang Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications ACS Energy Lett. 2017 10.1021/acsenergylett.7b00206 2 1035 

  35. Han High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors Chem. Commun. 2015 10.1039/C5CC02626A 51 11626 

  36. Li Manganese oxides supported on hydrogenated TiO2 nanowire array catalysts for the electrochemical oxygen evolution reaction in water electrolysis J. Mater. Chem. A 2015 10.1039/C5TA04964D 3 21308 

  37. Xu Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors Chem. Eng. J. 2018 10.1016/j.cej.2017.12.065 336 602 

  38. Wang Porous cobalt-iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting Chem. Commun. 2016 10.1039/C6CC06608A 52 12614 

  39. Zhang Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting Int. J. Hydrogen Energy 2018 10.1016/j.ijhydene.2018.02.157 43 7299 

  40. Li Insight of synergistic effect of different active metal ions in layered double hydroxides on their electrochemical behaviors Electrochim. Acta 2017 10.1016/j.electacta.2017.09.075 253 302 

  41. Luo Mesoporous MoO3−x Material as an Efficient Electrocatalyst for Hydrogen Evolution Reactions Adv. Energy Master. 2016 6 160052 

  42. Grimaud Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution Nat. Chem. 2017 10.1038/nchem.2695 9 457 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로