$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] ClpL is a functionally active tetradecameric AAA+ chaperone, distinct from hexameric/dodecameric ones

The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, v.34 no.11, 2020년, pp.14353 - 14370  

Kim, Gyuhee (Department of Biological Sciences Sungkyunkwan University Suwon Korea) ,  Lee, Seong‐Gyu (Center for Biomolecular and Cellular Structure Institute for Basic Science (IBS) Daejeon Korea) ,  Han, Seungsu (Department of Biological Sciences Sungkyunkwan University Suwon Korea) ,  Jung, Jaeeun (Department of Biological Sciences Sungkyunkwan University Suwon Korea) ,  Jeong, Hyeong Seop (Korea Basic Science Institute Cheongju Korea) ,  Hyun, Jae‐kyung (Korea Basic Science Institute Cheongju Korea) ,  Rhee, Dong‐Kwon (School of Pharmacy Sungkyunkwan University Suwon Korea) ,  Kim, Ho Min (Center for Biomolecular and Cellular Structure Institute for Basic Science (IBS) Daejeon Korea) ,  Lee, Sangho (Department of Biological Sciences Sungkyunkwan University Suwon Korea)

초록이 없습니다.

참고문헌 (70)

  1. Doyle, Shannon M., Genest, Olivier, Wickner, Sue. Protein rescue from aggregates by powerful molecular chaperone machines. Nature reviews. Molecular cell biology, vol.14, no.10, 617-629.

  2. Hayer-Hartl, MK, Martin, J, Hartl, FU. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science, vol.269, no.5225, 836-841.

  3. Todd, MJ, Viitanen, PV, Lorimer, GH. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science, vol.265, no.5172, 659-666.

  4. Thomas, Jeffrey G., Baneyx, François. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Molecular microbiology, vol.36, no.6, 1360-1370.

  5. Hartl, F. Ulrich, Bracher, Andreas, Hayer-Hartl, Manajit. Molecular chaperones in protein folding and proteostasis. Nature, vol.475, no.7356, 324-332.

  6. Corrales, F J, Fersht, A R. Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage.. Proceedings of the National Academy of Sciences of the United States of America, vol.93, no.9, 4509-4512.

  7. 10.1038/s41580‐019‐0183‐6 

  8. Zolkiewski, M., Zhang, T., Nagy, M.. Aggregate reactivation mediated by the Hsp100 chaperones. Archives of biochemistry and biophysics, vol.520, no.1, 1-6.

  9. Saibil, Helen. Chaperone machines for protein folding, unfolding and disaggregation. Nature reviews. Molecular cell biology, vol.14, no.10, 630-642.

  10. Duran, Elizabeth C., Weaver, Clarissa L., Lucius, Aaron L.. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Frontiers in molecular biosciences, vol.4, 54-.

  11. 10.1046/j.1365‐2443.2001.00447.x 

  12. Doyle, S.M., Wickner, S.. Hsp104 and ClpB: protein disaggregating machines. Trends in biochemical sciences, vol.34, no.1, 40-48.

  13. Wang, Feng, Mei, Ziqing, Qi, Yutao, Yan, Chuangye, Hu, Qi, Wang, Jiawei, Shi, Yigong. Structure and mechanism of the hexameric MecA??ClpC molecular machine. Nature, vol.471, no.7338, 331-335.

  14. Kirstein, Janine, Molière, Noël, Dougan, David A., Turgay, Kür?ad. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nature reviews. Microbiology, vol.7, no.8, 589-599.

  15. Sweeny, E.A., Shorter, J.. Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. Journal of molecular biology, vol.428, no.9, 1870-1885.

  16. 10.1186/s12866‐020‐1719‐9 

  17. 10.1038/s41594‐020‐0409‐5 

  18. Zolkiewski, Michal. ClpB Cooperates with DnaK, DnaJ, and GrpE in Suppressing Protein Aggregation. The Journal of biological chemistry, vol.274, no.40, 28083-28086.

  19. Lee, Sukyeong, Sowa, Mathew E, Watanabe, Yo-hei, Sigler, Paul B, Chiu, Wah, Yoshida, Masasuke, Tsai, Francis T.F. The Structure of ClpB : A Molecular Chaperone that Rescues Proteins from an Aggregated State. Cell, vol.115, no.2, 229-240.

  20. Kim, K.I., Cheong, G.W., Park, S.C., Ha, J.S., Woo, K.M., Choi, S.J., Chung, C.H.. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. Journal of molecular biology, vol.303, no.5, 655-666.

  21. Carroni, Marta, Franke, Kamila B, Maurer, Michael, Jäger, Jasmin, Hantke, Ingo, Gloge, Felix, Linder, Daniela, Gremer, Sebastian, Turgay, Kürşad, Bukau, Bernd, Mogk, Axel. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control. eLife, vol.6, e30120-.

  22. Biter, Amadeo B., Lee, Sukyeong, Sung, Nuri, Tsai, Francis T.F.. Structural basis for intersubunit signaling in a protein disaggregating machine. Proceedings of the National Academy of Sciences of the United States of America, vol.109, no.31, 12515-12520.

  23. Yamasaki, Takashi, Oohata, Yukiko, Nakamura, Toshiki, Watanabe, Yo-hei. Analysis of the Cooperative ATPase Cycle of the AAA+ Chaperone ClpB from Thermus thermophilus by Using Ordered Heterohexamers with an Alternating Subunit Arrangement. The Journal of biological chemistry, vol.290, no.15, 9789-9800.

  24. Li, Tao, Weaver, Clarissa L., Lin, Jiabei, Duran, Elizabeth C., Miller, Justin M., Lucius, Aaron L.. Escherichia coli ClpB is a non-processive polypeptide translocase. The Biochemical journal, vol.470, no.1, 39-52.

  25. Kedzierska, S., Akoev, V., Barnett, M. E., Zolkiewski, M.. Structure and Function of the Middle Domain of ClpB from Escherichia coli. Biochemistry, vol.42, no.48, 14242-14248.

  26. Lee, Sukyeong, Sowa, Mathew E., Choi, Jae-Mun, Tsai, Francis T.F.. The ClpB/Hsp104 molecular chaperone—a protein disaggregating machine. Journal of structural biology, vol.146, no.1, 99-105.

  27. Yokom, Adam L, Gates, Stephanie N, Jackrel, Meredith E, Mack, Korrie L, Su, Min, Shorter, James, Southworth, Daniel R. Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Nature structural & molecular biology, vol.23, no.9, 830-837.

  28. Gates, Stephanie N., Yokom, Adam L., Lin, JiaBei, Jackrel, Meredith E., Rizo, Alexandrea N., Kendsersky, Nathan M., Buell, Courtney E., Sweeny, Elizabeth A., Mack, Korrie L., Chuang, Edward, Torrente, Mariana P., Su, Min, Shorter, James, Southworth, Daniel R.. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science, vol.357, no.6348, 273-279.

  29. Deville, Célia, Carroni, Marta, Franke, Kamila B., Topf, Maya, Bukau, Bernd, Mogk, Axel, Saibil, Helen R.. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Science advances, vol.3, no.8, e1701726-.

  30. 10.1038/s41467‐019‐10150‐y 

  31. Shorter, James, Southworth, Daniel R.. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Cold Spring Harbor perspectives in biology, vol.11, no.8, a034033-a034033.

  32. Miller, Justin M., Chaudhary, Hamza, Marsee, Justin D.. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins. Journal of structural biology, vol.201, no.1, 52-62.

  33. Park, Sang‐Sang, Kwon, Hyog‐Young, Tran, Thao Dang‐Hien, Choi, Moo‐Hyun, Jung, Seung‐Ha, Lee, Sangho, Briles, David E., Rhee, Dong‐Kwon. ClpL is a chaperone without auxiliary factors. The FEBS journal, vol.282, no.8, 1352-1367.

  34. Zhang, Xiaodong, Wigley, Dale B. The 'glutamate switch' provides a link between ATPase activity and ligand binding in AAA+ proteins. Nature structural & molecular biology, vol.15, no.11, 1223-1227.

  35. Schuck, Peter, Gillis, Richard B., Besong, Tabot M. D., Almutairi, Fahad, Adams, Gary G., Rowe, Arthur J., Harding, Stephen E.. SEDFIT–MSTAR: molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge. The Analyst : An International Journal of Analytical and Bioanalytical Science, vol.139, no.1, 79-92.

  36. 1992 Royal Society of Chemistry London T Laue B Shah T Ridgeway PS En SE Harding HC Horton AJ Rowe Analytical ultracentrifugation in biochemistry & polymer science 90 125 

  37. Scheres, Sjors H.W.. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. Journal of structural biology, vol.180, no.3, 519-530.

  38. Li, Xueming, Mooney, Paul, Zheng, Shawn, Booth, Chris, Braunfeld, Michael B., Gubbens, Sander, Agard, David A., Cheng, Yifan. Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM. Nature methods, vol.10, no.6, 584-590.

  39. Rohou, A., Grigorieff, N.. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. Journal of structural biology, vol.192, no.2, 216-221.

  40. Heymann, J. Bernard, Belnap, David M.. Bsoft: Image processing and molecular modeling for electron microscopy. Journal of structural biology, vol.157, no.1, 3-18.

  41. Grant, Timothy, Rohou, Alexis, Grigorieff, Nikolaus. cis TEM, user-friendly software for single-particle image processing. eLife, vol.7, e35383-.

  42. Pettersen, Eric F., Goddard, Thomas D., Huang, Conrad C., Couch, Gregory S., Greenblatt, Daniel M., Meng, Elaine C., Ferrin, Thomas E.. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of computational chemistry, vol.25, no.13, 1605-1612.

  43. Emsley, Paul, Cowtan, Kevin. Coot: model-building tools for molecular graphics. Acta crystallographica. Section D, Biological crystallography, vol.60, no.12, 2126-2132.

  44. Adams, Paul D., Afonine, Pavel V., Bunkóczi, Gábor, Chen, Vincent B., Davis, Ian W., Echols, Nathaniel, Headd, Jeffrey J., Hung, Li-Wei, Kapral, Gary J., Grosse-Kunstleve, Ralf W., McCoy, Airlie J., Moriarty, Nigel W., Oeffner, Robert, Read, Randy J., Richardson, David C., Richardson, Jane S., Terwilliger, Thomas C., Zwart, Peter H.. PHENIX : a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography, vol.66, no.2, 213-221.

  45. Wang, Ray Yu-Ruei, Song, Yifan, Barad, Benjamin A, Cheng, Yifan, Fraser, James S, DiMaio, Frank. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife, vol.5, e17219-.

  46. 10.1107/S0021889892001663 

  47. Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens, H. D. T., Kikhney, A. G., Hajizadeh, N. R., Franklin, J. M., Jeffries, C. M., Svergun, D. I.. ATSAS 2.8 : a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography, vol.50, no.4, 1212-1225.

  48. Franke, Daniel, Svergun, Dmitri I.. DAMMIF , a program for rapid ab-initio shape determination in small-angle scattering. Journal of applied crystallography, vol.42, no.2, 342-346.

  49. Volkov, Vladimir V., Svergun, Dmitri I.. Uniqueness of ab initio shape determination in small-angle scattering. Journal of applied crystallography, vol.36, no.3, 860-864.

  50. 10.1016/S0006‐3495(99)77443‐6 

  51. Kozin, M. B., Svergun, D. I.. Automated matching of high- and low-resolution structural models. Journal of applied crystallography, vol.34, no.1, 33-41.

  52. Saeed, I.A., Ashraf, S.S.. Denaturation studies reveal significant differences between GFP and blue fluorescent protein. International journal of biological macromolecules, vol.45, no.3, 236-241.

  53. Liu, Jing, Mei, Ziqing, Li, Ningning, Qi, Yutao, Xu, Yanji, Shi, Yigong, Wang, Feng, Lei, Jianlin, Gao, Ning. Structural Dynamics of the MecA-ClpC Complex : A TYPE II AAA+ PROTEIN UNFOLDING MACHINE. The Journal of biological chemistry, vol.288, no.24, 17597-17608.

  54. Zolkiewski, Michal, Kessel, Martin, Ginsburg, Ann, Maurizi, Michael R.. Nucleotide‐dependent oligomerization of C1pB from Escherichia coli. Protein science : a publication of the Protein Society, vol.8, no.9, 1899-1903.

  55. Shiau, Andrew K., Harris, Seth F., Southworth, Daniel R., Agard, David A.. Structural Analysis of E. coli hsp90 Reveals Dramatic Nucleotide-Dependent Conformational Rearrangements. Cell, vol.127, no.2, 329-340.

  56. Ewens, Caroline A., Su, M., Zhao, L., Nano, N., Houry, Walid A., Southworth, Daniel R.. Architecture and Nucleotide-Dependent Conformational Changes of the Rvb1-Rvb2 AAA+ Complex Revealed by Cryoelectron Microscopy. Structure, vol.24, no.5, 657-666.

  57. Yu, Hongjun, Lupoli, Tania J., Kovach, Amanda, Meng, Xing, Zhao, Gongpu, Nathan, Carl F., Li, Huilin. ATP hydrolysis-coupled peptide translocation mechanism of Mycobacterium tuberculosis ClpB. Proceedings of the National Academy of Sciences of the United States of America, vol.115, no.41, E9560-E9569.

  58. Lipińska, Natalia, Ziętkiewicz, Szymon, Sobczak, Alicja, Jurczyk, Agnieszka, Potocki, Wojciech, Morawiec, Ewa, Wawrzycka, Aleksandra, Gumowski, Krzysztof, Ślusarz, Magdalena, Rodziewicz-Motowidło, Sylwia, Chruściel, Elżbieta, Liberek, Krzysztof. Disruption of Ionic Interactions between the Nucleotide Binding Domain 1 (NBD1) and Middle (M) Domain in Hsp100 Disaggregase Unleashes Toxic Hyperactivity and Partial Independence from Hsp70. The Journal of biological chemistry, vol.288, no.4, 2857-2869.

  59. DeSantis, Morgan E., Sweeny, Elizabeth A., Snead, David, Leung, Eunice H., Go, Michelle S., Gupta, Kushol, Wendler, Petra, Shorter, James. Conserved Distal Loop Residues in the Hsp104 and ClpB Middle Domain Contact Nucleotide-binding Domain 2 and Enable Hsp70-dependent Protein Disaggregation. The Journal of biological chemistry, vol.289, no.2, 848-867.

  60. Carroni, Marta, Kummer, Eva, Oguchi, Yuki, Wendler, Petra, Clare, Daniel K, Sinning, Irmgard, Kopp, Jürgen, Mogk, Axel, Bukau, Bernd, Saibil, Helen R. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. eLife, vol.3, e02481-.

  61. Rambo, Robert P., Tainer, John A.. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod‐Debye law. Biopolymers, vol.95, no.8, 559-571.

  62. Barnett, Micheal E., Zolkiewska, Anna, Zolkiewski, Michal. Structure and Activity of ClpB from Escherichia coli. The Journal of biological chemistry, vol.275, no.48, 37565-37571.

  63. Akoev, Vladimir, Gogol, Edward P., Barnett, Micheal E., Zolkiewski, Michal. Nucleotide‐induced switch in oligomerization of the AAA+ ATPase ClpB. Protein science : a publication of the Protein Society, vol.13, no.3, 567-574.

  64. Rohrwild, Markus, Pfeifer, Günter, Santarius, Ute, Müller, Shirley A., Huang, H.-C., Engel, Andreas, Baumeister, Wolfgang, Goldberg, Alfred L.. The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nature structural biology, vol.4, no.2, 133-139.

  65. Miyata, T., Yamada, K., Iwasaki, H., Shinagawa, H., Morikawa, K., Mayanagi, K.. Two Different Oligomeric States of the RuvB Branch Migration Motor Protein as Revealed by Electron Microscopy. Journal of structural biology, vol.131, no.2, 83-89.

  66. Ishikawa, Takashi, Beuron, Fabienne, Kessel, Martin, Wickner, Sue, Maurizi, Michael R., Steven, Alasdair C.. Translocation pathway of protein substrates in ClpAP protease. Proceedings of the National Academy of Sciences of the United States of America, vol.98, no.8, 4328-4333.

  67. Ripstein, Zev A, Vahidi, Siavash, Houry, Walid A, Rubinstein, John L, Kay, Lewis E. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. eLife, vol.9, e52158-.

  68. 10.1038/s41594‐019‐0304‐0 

  69. Kater, Lukas, Wagener, Nikola, Berninghausen, Otto, Becker, Thomas, Neupert, Walter, Beckmann, Roland. Structure of the Bcs1 AAA-ATPase suggests an airlock-like translocation mechanism for folded proteins. Nature structural & molecular biology, vol.27, no.2, 142-149.

  70. 10.1186/s12859‐015‐0545‐9 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로