최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.10 no.1, 2020년, pp.19653 -
Jeong, Seongmun (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea) , Kim, Jae-Yoon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea) , Kim, Namshin (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea)
The increased accessibility to genomic data in recent years has laid the foundation for studies to predict various phenotypes of organisms based on the genome. Genomic prediction collectively refers to these studies, and it estimates an individual’s phenotypes mainly using single nucleotide po...
1. Bian Y Holland J Enhancing genomic prediction with genome-wide association studies in multiparental maize populations Heredity (Edinb) 2017 118 6 585 593 10.1038/hdy.2017.4 28198815
2. Perez-Enciso M Zingaretti LM A guide on deep learning for complex trait genomic prediction Genes (Basel) 2019 10 7 E553 10.3390/genes10070553 31330861
3. Druet T Macleod IM Hayes BJ Toward genomic prediction from whole-genome sequence data: Impact of sequencing design on genotype imputation and accuracy of predictions Heredity (Edinb) 2014 112 1 39 47 10.1038/hdy.2013.13 23549338
4. Ober U Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster PLoS Genet. 2012 8 5 e1002685 10.1371/journal.pgen.1002685 22570636
5. Veerkamp RF Bouwman AC Schrooten C Calus MP Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein?Friesian cattle Genet. Sel. Evol. 2016 48 1 95 10.1186/s12711-016-0274-1 27905878
6. Al K Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep Genet. Sel. Evol. 2019 51 1 32 10.1186/s12711-019-0476-4 31242855
7. Ni G Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture Genet. Sel. Evol. 2017 49 1 8 10.1186/s12711-016-0277-y 28093063
8. Brøndum RF Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction J. Dairy Sci. 2015 98 6 4107 4116 10.3168/jds.2014-9005 25892697
9. van den Berg I Boichard D Guldbrandtsen B Lund MS Using sequence variants in linkage disequilibrium with causative mutations to improve across-breed prediction in dairy cattle: A simulation study G3 (Bethesda) 2016 6 8 2553 2561 10.1534/g3.116.027730 27317779
10. Mihaescu R Meigs J Sijbrands E Janssens AC Genetic risk profiling for prediction of type 2 diabetes PLoS Curr. 2011 10.1371/currents.RRN1208 21278902
11. Manolio TA Finding the missing heritability of complex diseases Nature 2009 461 7265 747 753 10.1038/nature08494 19812666
12. Balding DJ A tutorial on statistical methods for population association studies Nat. Rev. Genet. 2006 7 10 781 791 10.1038/nrg1916 16983374
13. Bermingham ML Application of high-dimensional feature selection: Evaluation for genomic prediction in man Sci. Rep. 2015 5 10312 10.1038/srep10312 25988841
14. Filho DF Tournaments between markers as a strategy to enhance genomic predictions PLoS ONE 2019 14 6 e0217283 10.1371/journal.pone.0217283 31233512
15. Yilmaz S Tastan O Cicek E Spadis: An algorithm for selecting predictive and diverse snps in gwas IEEE ACM Trans. Comput. Biol. Bioinform. 2019 10.1109/TCBB.2019.2935437
16. Wray NR Pitfalls of predicting complex traits from SNPs Nat. Rev. Genet. 2013 14 7 507 515 10.1038/nrg3457 23774735
17. Endelman JB Ridge regression and other kernels for genomic selection with R package rrBLUP Plant Genome 2011 4 3 250 255 10.3835/plantgenome2011.08.0024
18. R Core Team. R: A language and environment for statistical computing. https://www.R-project.org (2018).
19. Meuwissen THE Hayes BJ Goddard ME Prediction of total genetic value using genome-wide dense marker maps Genetics 2001 157 4 1819 1829 11290733
20. McKinney BA Reif DM Ritchie MD Moore JH Machine learning for detecting gene?gene interactions Appl. Bioinform. 2006 5 2 77 88 10.2165/00822942-200605020-00002
21. Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2 (3), 18?22. https://CRAN.R-project.org/doc/Rnews/Rnews_2002-3.pdf (2002). Accessed 21 August 2020.
22. Abadi, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. Preprint at https://arxiv.org/abs/1603.04467 (2016). Accesed 5 September 2020.
23. Chollet, F. Keras: Deep Learning for humans. https://github.com/fchollet/keras (2015). Accessed 5 September 2020.
24. Ma W A deep convolutional neural network approach for predicting phenotypes from genotypes Planta 2018 248 5 1307 1318 10.1007/s00425-018-2976-9 30101399
25. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
26. Zhao K Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa Nat. Commun. 2011 2 1 467 10.1038/ncomms1467 21915109
27. Jeong S-C Genetic diversity patterns and domestication origin of soybean Theor. Appl. Genet. 2018 132 4 1179 1193 10.1007/s00122-018-3271-7 30588539
28. Jeong N Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study PLoS ONE 2019 14 10 e0224074 10.1371/journal.pone.0224074 31639154
29. Browning BL Zhou Y Browning SR A one-penny imputed genome from next-generation reference panels Am. J. Hum. Genet. 2018 103 3 338 348 10.1016/j.ajhg.2018.07.015 30100085
30. Wang, J. & Zhang, Z. GAPIT version 3: An interactive analytical tool for genomic association and prediction. Preprint at https://github.com/jiabowang/GAPIT3 (2018). Accessed 11 July 2020.
31. Yin L KAML: Improving genomic prediction accuracy of complex traits using machine learning determined parameters Genome Biol. 2020 21 1 1 22 10.1186/s13059-020-02052-w
32. Moser G Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model PLoS Genet. 2015 11 4 e1004969 10.1371/journal.pgen.1004969 25849665
33. Lloyd-Jones LR Improved polygenic prediction by Bayesian multiple regression on summary statistics Nat. Commun. 2019 10 1 1 11 10.1038/s41467-019-12653-0 30602773
34. Ghojogh, B. & Crowley, M. The theory behind overfitting, cross validation, regularization, bagging, and boosting: tutorial.?Preprint at https://arxiv.org/abs/1905.12787 (2019). Accessed 11 July 2020.
35. Azodi CB Benchmarking parametric and machine learning models for genomic prediction of complex traits G3 (Bethesda) 2019 9 11 3691 3702 10.1534/g3.119.400498 31533955
36. Mouresan EF Selle M Ronnegard L Genomic prediction including SNP-specific variance predictors G3 (Bethesda) 2019 9 10 3333 3343 10.1534/g3.119.400381 31467030
37. Waldmann P Genome-wide prediction using Bayesian additive regression trees Genet. Sel. Evol. 2016 48 1 42 10.1186/s12711-016-0219-8 27286957
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.