최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature neuroscience, v.23 no.12, 2020년, pp.1555 - 1566
Chun, Heejung , Im, Hyeonjoo , Kang, You Jung , Kim, Yunha , Shin, Jin Hee , Won, Woojin , Lim, Jiwoon , Ju, Yeonha , Park, Yongmin Mason , Kim, Sunpil , Lee, Seung Eun , Lee, Jaekwang , Woo, Junsung , Hwang, Yujin , Cho, Hyesun , Jo, Seonmi , Park, Jong-Hyun , Kim, Daesoo , Kim, Doo Yeon , Seo, Jeong-Sun , Gwag, Byoung Joo , Kim, Young Soo , Park, Ki Duk , Kaang, Bong-Kiun , Cho, Hansang , Ryu, Hoon , Lee, C. Justin
초록이 없습니다.
Lancet Neurol. CR Jack Jr. 9 119 2010 10.1016/S1474-4422(09)70299-6 Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119-128 (2010).
Trends Neurosci. MV Sofroniew 32 638 2009 10.1016/j.tins.2009.08.002 Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638-647 (2009).
Neurosci. Lett. MA Anderson 565 23 2014 10.1016/j.neulet.2013.12.030 Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23-29 (2014).
Front. Cell. Neurosci. L Ben Haim 9 278 2015 10.3389/fncel.2015.00278 Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzériat, K. & Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 9, 278 (2015).
FASEB J. AW Kraft 27 187 2013 10.1096/fj.12-208660 Kraft, A. W. et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27, 187-198 (2013).
Glia W Kamphuis 63 1036 2015 10.1002/glia.22800 Kamphuis, W. et al. GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer’s disease. Glia 63, 1036-1056 (2015).
Cell Stem Cell S Sirko 12 426 2013 10.1016/j.stem.2013.01.019 Sirko, S. et al. Reactive glia in the injured brain acquire stem cell properties in response to Sonic hedgehog. Cell Stem Cell 12, 426-439 (2013).
Neurosci. Res. H Chun 126 44 2018 10.1016/j.neures.2017.11.012 Chun, H. & Lee, C. J. Reactive astrocytes in Alzheimer’s disease: a double-edged sword.Neurosci. Res. 126, 44-52 (2018).
Front. Neurol. H Chun 9 797 2018 10.3389/fneur.2018.00797 Chun, H., Marriott, I., Lee, C. J. & Cho, H. Elucidating the interactive roles of glia in Alzheimer’s disease using established and newly developed experimental models. Front. Neurol. 9, 797 (2018).
J. Neurosci. L Ben Haim 35 2817 2015 10.1523/JNEUROSCI.3516-14.2015 Ben Haim, L. et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817-2829 (2015).
J. Neurosci. I Allaman 30 3326 2010 10.1523/JNEUROSCI.5098-09.2010 Allaman, I. et al. Amyloid-β aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J. Neurosci. 30, 3326-3338 (2010).
Nature SA Liddelow 541 481 2017 10.1038/nature21029 Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487 (2017).
J. Cereb. Blood Flow. Metab. L Hertz 27 219 2007 10.1038/sj.jcbfm.9600343 Hertz, L., Peng, L. & Dienel, G. A. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow. Metab. 27, 219-249 (2007).
Hippocampus C Pomilio 26 194 2016 10.1002/hipo.22503 Pomilio, C. et al. Glial alterations from early to late stages in a model of Alzheimer’s disease: evidence of autophagy involvement in Aβ internalization. Hippocampus 26, 194-210 (2016).
Front. Aging Neurosci. M Ries 8 160 2016 10.3389/fnagi.2016.00160 Ries, M. & Sastre, M. Mechanisms of Aβ clearance and degradation by glial cells. Front. Aging Neurosci. 8, 160 (2016).
in vitro and in situ. Nat. Med. T Wyss-Coray 9 453 2003 10.1038/nm838 Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β. in vitro and in situ. Nat. Med. 9, 453-457 (2003).
Neurosci. Lett. A Korenić 595 128 2015 10.1016/j.neulet.2015.04.020 Korenić, A., Andjus, P., Radenović, L. & Spasojević, I. The role of autophagy and lipolysis in survival of astrocytes under nutrient deprivation. Neurosci. Lett. 595, 128-133 (2015).
Nat. Med. S Jo 20 886 2014 10.1038/nm.3639 Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886-896 (2014).
Arch. Biochem. Biophys. QM Chen 373 242 2000 10.1006/abbi.1999.1558 Chen, Q. M., Tu, V. C., Wu, Y. & Bahl, J. J. Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Arch. Biochem. Biophys. 373, 242-248 (2000).
Aging Dis. I Afanas’ev 5 52 2014 10.14336/AD.2014.050052 Afanas’ev, I. New nucleophilic mechanisms of ROS-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis. 5, 52-62 (2014).
Nat. Methods T Buch 2 419 2005 10.1038/nmeth762 Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419-426 (2005).
Exp. Neurobiol. YM Park 27 508 2018 10.5607/en.2018.27.6.508 Park, Y. M., Chun, H., Shin, J. I. & Lee, C. J. Astrocyte specificity and coverage of hGFAP-CreERT2 [Tg(GFAP-Cre/ERT2)13Kdmc] mouse line in various brain regions. Exp. Neurobiol. 27, 508-525 (2018).
Nat. Neurosci. E Gropp 8 1289 2005 10.1038/nn1548 Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289-1291 (2005).
Nat. Neurosci. PF Durieux 12 393 2009 10.1038/nn.2286 Durieux, P. F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393-395 (2009).
J. Neurosci. M Arruda-Carvalho 34 15793 2014 10.1523/JNEUROSCI.2336-13.2014 Arruda-Carvalho, M. et al. Posttraining ablation of adult-generated olfactory granule cells degrades odor-reward memories. J. Neurosci. 34, 15793-15803 (2014).
Cell CN Parkhurst 155 1596 2013 10.1016/j.cell.2013.11.030 Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596-1609 (2013).
PLoS ONE A Ghosh 6 e22735 2011 10.1371/journal.pone.0022735 Ghosh, A. et al. Targeted ablation of oligodendrocytes triggers axonal damage. PLoS ONE 6, e22735 (2011).
Exp. Neurobiol. H Chun 27 155 2018 10.5607/en.2018.27.3.155 Chun, H. et al. Astrocytic proBDNF and Tonic GABA distinguish active versus reactive astrocytes in hippocampus. Exp. Neurobiol. 27, 155-170 (2018).
Oxid. Med. Cell. Longev. D Maggiorani 2017 3017947 2017 10.1155/2017/3017947 Maggiorani, D. et al. Monoamine oxidases, oxidative stress, and altered mitochondrial dynamics in cardiac ageing. Oxid. Med. Cell. Longev. 2017, 3017947 (2017).
J. Neurochem. JH Shin 122 952 2012 10.1111/j.1471-4159.2012.07771.x Shin, J. H. et al. Concurrent blockade of free radical and microsomal prostaglandin E synthase-1-mediated PGE2 production improves safety and efficacy in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 122, 952-961 (2012).
J. Pharmacol. Exp. Ther. E Borroni 362 413 2017 10.1124/jpet.117.241653 Borroni, E. et al. Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 362, 413-423 (2017).
J. Cell Sci. D Zhu 118 3695 2005 10.1242/jcs.02507 Zhu, D. et al. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J. Cell Sci. 118, 3695-3703 (2005).
Sci. Adv. J-H Park 5 eaav0316 2019 10.1126/sciadv.aav0316 Park, J.-H. et al. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease.Sci. Adv. 5, eaav0316 (2019).
Oxid. Med. Cell. Longev. A Popa-Wagner 2013 963520 2013 10.1155/2013/963520 Popa-Wagner, A., Mitran, S., Sivanesan, S., Chang, E. & Buga, A.-M. ROS and brain diseases: the good, the bad, and the ugly. Oxid. Med. Cell. Longev. 2013, 963520 (2013).
Cell Death Dis. CJ Garwood 2 2011 10.1038/cddis.2011.50 Garwood, C. J., Pooler, A. M., Atherton, J., Hanger, D. P. & Noble, W. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2, e167 (2011).
J. Neuroinflammation D Krstic 9 2012 10.1186/1742-2094-9-151 Krstic, D. et al. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflammation 9, 151 (2012).
Diagn. Pathol. JR Eidet 9 92 2014 10.1186/1746-1596-9-92 Eidet, J. R., Pasovic, L., Maria, R., Jackson, C. J. & Utheim, T. P. Objective assessment of changes in nuclear morphology and cell distribution following induction of apoptosis. Diagn. Pathol. 9, 92 (2014).
Brain Res. WC Benzing 606 10 1993 10.1016/0006-8993(93)91563-8 Benzing, W. C., Mufson, E. J. & Armstrong, D. M. Alzheimer’s disease-like dystrophic neurites characteristically associated with senile plaques are not found within other neurodegenerative diseases unless amyloid β-protein deposition is present. Brain Res. 606, 10-18 (1993).
Am. J. Pathol. D-S Yang 173 665 2008 10.2353/ajpath.2008.071176 Yang, D.-S. et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer’s disease. Am. J. Pathol. 173, 665-681 (2008).
Acta Neuropathol. JC Augustinack 103 26 2002 10.1007/s004010100423 Augustinack, J. C., Schneider, A., Mandelkow, E.-M. & Hyman, B. T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 103, 26-35 (2002).
Pharmacol. Biochem. Behav. RM Stephenson 15 597 1981 10.1016/0091-3057(81)90216-1 Stephenson, R. M. & Andrew, R. J. Amnesia due to β-antagonists in a passive avoidance task in the chick. Pharmacol. Biochem. Behav. 15, 597-604 (1981).
Nat. Neurosci. J Park 21 941 2018 10.1038/s41593-018-0175-4 Park, J. et al.A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease.Nat. Neurosci. 21, 941-951 (2018).
Biochim. Biophys. Acta C Schwab 1802 889 2010 10.1016/j.bbadis.2009.10.013 Schwab, C., Klegeris, A. & McGeer, P. L. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim. Biophys. Acta 1802, 889-902 (2010).
Nat. Neurosci. PI Ortinski 13 584 2010 10.1038/nn.2535 Ortinski, P. I. et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584-591 (2010).
Learn. Mem. J Haettig 20 139 2013 10.1101/lm.027847.112 Haettig, J., Sun, Y., Wood, M. A. & Xu, X. Cell-type specific inactivation of hippocampal CA1 disrupts location-dependent object recognition in the mouse. Learn. Mem. 20, 139-146 (2013).
Exp. Neurobiol. J Woo 26 158 2017 10.5607/en.2017.26.3.158 Woo, J. et al. Functional characterization of resting and adenovirus-induced reactive astrocytes in three-dimensional culture. Exp. Neurobiol. 26, 158-167 (2017).
Signal Transduct. Target. Ther. PP Liu 4 29 2019 10.1038/s41392-019-0063-8 Liu, P. P., Xie, Y., Meng, X.-Y. & Kang, J.-S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 4, 29 (2019).
Mol. Psychiatry T Roostaei 22 287 2017 10.1038/mp.2016.35 Roostaei, T. et al. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol. Psychiatry 22, 287-295 (2017).
J. Physiol. CJ Lee 581 1057 2007 10.1113/jphysiol.2007.130377 Lee, C. J. et al. Astrocytic control of synaptic NMDA receptors. J. Physiol. 581, 1057-1081 (2007).
Autophagy Y Kim 11 796 2015 10.1080/15548627.2015.1035503 Kim, Y. et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy 11, 796-811 (2015).
Nature SH Choi 515 274 2014 10.1038/nature13800 Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274-278 (2014).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.