$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] How Rh surface breaks CO 2 molecules under ambient pressure 원문보기

Nature communications, v.11 no.1 = v.11, 2020년, pp.5649 -   

Kim, Jeongjin (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Ha, Hyunwoo (Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea) ,  Doh, Won Hui (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Ueda, Kohei (Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan) ,  Mase, Kazuhiko (Institute of Materials Structure Science, High Energy Accelerator Research Organization, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, 305-0801 Japan) ,  Kondoh, Hiroshi (Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan) ,  Mun, Bongjin Simon (Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Republic of Korea) ,  Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea) ,  Park, Jeong Young (C)

Abstract AI-Helper 아이콘AI-Helper

Utilization of carbon dioxide (CO2) molecules leads to increased interest in the sustainable synthesis of methane (CH4) or methanol (CH3OH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, th...

참고문헌 (69)

  1. 1. Shakun JD Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation Nature 2012 484 49 54 10.1038/nature10915 22481357 

  2. 2. Sperry JS The impact of rising CO 2 and acclimation on the response of US forests to global warming Proc. Natl Acad. Sci. USA 2019 116 25734 25744 10.1073/pnas.1913072116 31767760 

  3. 3. Chu S Majumdar A Opportunities and challenges for a sustainable energy future Nature 2012 488 294 303 10.1038/nature11475 22895334 

  4. 4. Rostrupnielsen JR Hansen JHB CO 2 -reforming of methane over transition metals J. Catal. 1993 144 38 49 10.1006/jcat.1993.1312 

  5. 5. Olah GA Towards oil independence through renewable methanol chemistry Angew. Chem. Int. Ed. 2013 52 104 107 10.1002/anie.201204995 

  6. 6. Freund HJ Roberts MW Surface chemistry of carbon dioxide Surf. Sci. Rep. 1996 25 225 273 10.1016/S0167-5729(96)00007-6 

  7. 7. Bradford MCJ Vannice MA CO 2 reforming of CH 4 Catal. Rev. 1999 41 1 42 10.1081/CR-100101948 

  8. 8. Kuhl KP Cave ER Abram DN Jaramillo TF New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces Energy Environ. Sci. 2012 5 7050 7059 10.1039/c2ee21234j 

  9. 9. Voiry D Shin HS Loh KP Chhowalla M Low-dimensional catalysts for hydrogen evolution and CO 2 reduction Nat. Rev. Chem. 2018 2 0105 10.1038/s41570-017-0105 

  10. 10. Behrens M The active site of methanol synthesis over Cu/ZnO/Al 2 O 3 industrial catalysts Science 2012 336 893 897 10.1126/science.1219831 22517324 

  11. 11. Kattel S Ramirez PJ Chen JG Rodriguez JA Liu P Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts Science 2017 355 1296 1299 10.1126/science.aal3573 28336665 

  12. 12. Kim C Energy-efficient CO 2 hydrogenation with fast response using photoexcitation of CO 2 adsorbed on metal catalysts Nat. Commun. 2018 9 3027 10.1038/s41467-018-05542-5 30072704 

  13. 13. Beuls A Methanation of CO 2 : further insight into the mechanism over Rh/γ-Al 2 O 3 catalyst Appl. Catal. B-Environ. 2012 113?114 2 10 10.1016/j.apcatb.2011.02.033 

  14. 14. Solymosi F Erdohelyi A Bansagi T Methanation of CO 2 on supported rhodium catalyst J. Catal. 1981 68 371 382 10.1016/0021-9517(81)90106-8 

  15. 15. Xu S Carter EA Theoretical insights into heterogeneous (photo)electrochemical CO 2 reduction Chem. Rev. 2019 119 6631 6669 10.1021/acs.chemrev.8b00481 30561988 

  16. 16. Sexton BA Somorjai GA The hydrogenation of CO and CO 2 over polycrystalline rhodium: correlation of surface composition, kinetics and product distributions J. Catal. 1977 46 167 189 10.1016/0021-9517(77)90198-1 

  17. 17. Weinberg WH Why CO 2 does not dissociate on Rh at low temperature Surf. Sci. Lett. 1983 128 L224 L230 

  18. 18. Somorjai GA Park JY Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure Chem. Soc. Rev. 2008 37 2155 2162 10.1039/b719148k 18818818 

  19. 19. Salmeron M Schlogl R Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology Surf. Sci. Rep. 2008 63 169 199 10.1016/j.surfrep.2008.01.001 

  20. 20. Favaro M Subsurface oxide plays a critical role in CO 2 activation by Cu(111) surfaces to form chemisorbed CO 2 , the first step in reduction of CO 2 Proc. Natl Acad. Sci. USA 2017 114 6706 6711 28607092 

  21. 21. Skafte TL Selective high-temperature CO 2 electrolysis enabled by oxidized carbon intermediates Nat. Energy 2019 4 846 855 10.1038/s41560-019-0457-4 

  22. 22. Eren B Weatherup RS Liakakos N Somorjai GA Salmeron M Dissociative carbon dioxide adsorption and morphological changes on Cu(100) and Cu(111) at ambient pressures J. Am. Chem. Soc. 2016 138 8207 8211 10.1021/jacs.6b04039 27280375 

  23. 23. Kim Y Trung TSB Yang S Kim S Lee H Mechanism of the surface hydrogen induced conversion of CO 2 to methanol at Cu(111) step sites ACS Catal. 2016 6 1037 1044 10.1021/acscatal.5b02083 

  24. 24. Roiaz M Reverse water?gas shift or Sabatier methanation on Ni(110)? Stable surface species at near-ambient pressure J. Am. Chem. Soc. 2016 138 4146 4154 10.1021/jacs.5b13366 26954458 

  25. 25. Heine C Lechner BAJ Bluhm H Salmeron M Recycling of CO 2 : probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-ray photoelectron spectroscopy J. Am. Chem. Soc. 2016 138 13246 13252 10.1021/jacs.6b06939 27599672 

  26. 26. Stempel S Baumer M Freund HJ STM studies of rhodium deposits on an ordered alumina film-resolution and tip effects Surf. Sci. 1998 402?404 424 427 10.1016/S0039-6028(97)01052-2 

  27. 27. Cernota P Rider K Yoon HA Salmeron M Somorjai G Dense structures formed by CO on Rh(111) studied by scanning tunneling microscopy Surf. Sci. 2000 445 249 255 10.1016/S0039-6028(99)01073-0 

  28. 28. Hertel T Knoesel E Wolf M Ertl G Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation Phys. Rev. Lett. 1996 76 535 538 10.1103/PhysRevLett.76.535 10061481 

  29. 29. Park JY Baker LR Somorjai GA Role of hot electrons and metal?oxide interfaces in surface chemistry and catalytic reactions Chem. Rev. 2015 115 2781 2817 10.1021/cr400311p 25791926 

  30. 30. Pacansky J Wahlgren U Bagus PS SCF ab­initio ground state energy surfaces for CO 2 and CO 2 ? J. Chem. Phys. 1975 62 2740 2744 10.1063/1.430807 

  31. 31. McDiarmid R Doering JP Electronic excited states of CO 2 : an electron impact investigation J. Chem. Phys. 1984 80 648 656 10.1063/1.446776 

  32. 32. Thiel PA Williams ED Yates JT Jr Weinberg WH The chemisorption of CO on Rh(111) Surf. Sci. 1979 84 54 64 10.1016/0039-6028(79)90279-6 

  33. 33. Van Hove MA Koestner RJ Frost JC Somorjai GA The structure of Rh(111)(2 × 2)-3CO from LEED intensities: Simultaneous bridge and near-top adsorption in a distorted compact hexagonal CO overlayer Surf. Sci. 1983 129 482 506 10.1016/0039-6028(83)90193-0 

  34. 34. Feng X Cerda JI Salmeron M Orientation-dependent interaction between CO 2 molecules adsorbed on Ru(0001) J. Phys. Chem. Lett. 2015 6 1780 1784 10.1021/acs.jpclett.5b00643 26263349 

  35. 35. Binnig G Garcia N Rohrer H Conductivity sensitivity of inelastic scanning tunneling microscopy Phys. Rev. B 1985 32 1336 1338 10.1103/PhysRevB.32.1336 

  36. 36. Hagman B Steps control the dissociation of CO 2 on Cu(100) J. Am. Chem. Soc. 2018 140 12974 12979 10.1021/jacs.8b07906 30226048 

  37. 37. Walsh, A. D. 466. The electronic orbitals, shapes, and spectra of polyatomic molecules. Part I. AH 2 molecules. J. Chem. Soc . 2260?2266 (1953). 

  38. 38. Compton RN Reinhardt PW Cooper CD Collisional ionization of Na, K, and Cs by CO 2 , COS, and CS 2 : molecular electron affinities J. Chem. Phys. 1975 63 3821 3827 10.1063/1.431875 

  39. 39. Powell CJ NIST data resources for surface analysis by X-ray photoelectron spectroscopy and Auger electron spectroscopy J. Electron. Spectros. Relat. Phenom. 2001 114-116 1097 1102 10.1016/S0368-2048(00)00252-8 

  40. 40. Beutler A On the adsorption sites for CO on the Rh(111) single crystal surface Surf. Sci. 1997 371 381 389 10.1016/S0039-6028(96)01014-X 

  41. 41. Ueda K Isegawa K Amemiya K Mase K Kondoh H Operando NAP-XPS observation and kinetics analysis of NO reduction over Rh(111) surface: characterization of active surface and reactive species ACS Catal. 2018 8 11663 11670 10.1021/acscatal.8b03180 

  42. 42. Baraldi A Spectroscopic link between adsorption site occupation and local surface chemical reactivity Phys. Rev. Lett. 2004 93 046101 10.1103/PhysRevLett.93.046101 15323775 

  43. 43. Baraldi A Lizzit S Novello A Comelli G Rosei R Second-layer surface core-level shift on Rh(111) Phys. Rev. B 2003 67 205404 10.1103/PhysRevB.67.205404 

  44. 44. Bianchettin L Experimental and theoretical surface core level shift study of the S-Rh(100) local environment J. Phys. Chem. C 2007 111 4003 4013 10.1021/jp0677593 

  45. 45. Bianchettin L Surface core level shift: high sensitive probe to oxygen-induced reconstruction of Rh(100) J. Phys. Chem. C 2009 113 13192 13198 10.1021/jp901223d 

  46. 46. Amann P A high-pressure x-ray photoelectron spectroscopy instrument for studies of industrially relevant catalytic reactions at pressures of several bars Rev. Sci. Instrum. 2019 90 103102 10.1063/1.5109321 

  47. 47. Blyholder G Molecular orbital view of chemisorbed carbon monoxide J. Phys. Chem. 1964 68 2772 2777 10.1021/j100792a006 

  48. 48. DeLouise LA White EJ Winograd N Characterization of CO binding sites on Rh{111} and Rh{331} surfaces by XPS and LEED: comparison to EELS results Surf. Sci. 1984 147 252 262 10.1016/0039-6028(84)90179-1 

  49. 49. Wiklund M Beutler A Nyholm R Andersen JN Vibrational analysis of the C 1s photoemission spectra from pure ethylidyne and ethylidyne coadsorbed with carbon monoxide on Rh(111) Surf. Sci. 2000 461 107 117 10.1016/S0039-6028(00)00542-2 

  50. 50. Kohler L High-coverage oxygen structures on Rh(111): adsorbate repulsion and site preference is not enough Phys. Rev. Lett. 2004 93 266103 10.1103/PhysRevLett.93.266103 15697994 

  51. 51. Toyoshima R High-pressure NO-induced mixed phase on Rh(111): chemically driven replacement J. Phys. Chem. C 2015 119 3033 3039 10.1021/jp507542h 

  52. 52. Koitaya T Real-time observation of reaction processes of CO 2 on Cu(997) by ambient-pressure X-ray photoelectron spectroscopy Top. Catal. 2016 59 526 531 10.1007/s11244-015-0535-1 

  53. 53. Tang DC Hwang KS Salmeron M Somorjai GA High pressure scanning tunneling microscopy study of CO poisoning of ethylene hydrogenation on Pt(111) and Rh(111) single crystals J. Phys. Chem. B 2004 108 13300 13306 10.1021/jp036580e 

  54. 54. Brune H Wintterlin J Behm RJ Ertl G Surface migration of "hot" adatoms in the course of dissociative chemisorption of oxygen on Al(111) Phys. Rev. Lett. 1992 68 624 626 10.1103/PhysRevLett.68.624 10045948 

  55. 55. Wintterlin J Schuster R Ertl G Existence of a "hot" atom mechanism for the dissociation of O 2 on Pt(111) Phys. Rev. Lett. 1996 77 123 126 10.1103/PhysRevLett.77.123 10061787 

  56. 56. Ceyer ST New mechanisms for chemistry at surfaces Science 1990 249 133 139 10.1126/science.249.4965.133 17836965 

  57. 57. Sanville E Kenny SD Smith R Henkelman G Improved grid-based algorithm for Bader charge allocation J. Comput. Chem. 2007 28 899 908 10.1002/jcc.20575 17238168 

  58. 58. Peng G Sibener SJ Schatz GC Ceyer ST Mavrikakis M CO 2 hydrogenation to formic acid on Ni(111) J. Phys. Chem. C 2012 116 3001 3006 10.1021/jp210408x 

  59. 59. Ko J Kim B-K Han JW Density functional theory study for catalytic activation and dissociation of CO 2 on bimetallic alloy surfaces J. Phys. Chem. C 2016 120 3438 3447 10.1021/acs.jpcc.6b00221 

  60. 60. Goodman DW Peebles DE White JM CO 2 dissociation on rhodium: measurement of the specific rates on Rh(111) Surf. Sci. 1984 140 L239 L243 10.1016/0039-6028(84)90374-1 

  61. 61. Abbott HL Harrison I Activated dissociation of CO 2 on Rh(111) and CO oxidation dynamics J. Phys. Chem. C 2007 111 13137 13148 10.1021/jp073686r 

  62. 62. Liu X Sun L Deng W-Q Theoretical investigation of CO 2 adsorption and dissociation on low index surfaces of transition metals J. Phys. Chem. C 2018 122 8306 8314 10.1021/acs.jpcc.7b12660 

  63. 63. Kim J Adsorbate-driven reactive interfacial Pt-NiO 1?x nanostructure formation on the Pt 3 Ni(111) alloy surface Sci. Adv. 2018 4 eaat3151 10.1126/sciadv.aat3151 30027118 

  64. 64. Kresse G Furthmuller J Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. 1996 6 15 50 10.1016/0927-0256(96)00008-0 

  65. 65. Kresse G Joubert D From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 10.1103/PhysRevB.59.1758 

  66. 66. Hammer B Hansen LB Nørskov JK Improved adsorption energetics within density-functional theory using revised Perdew?Burke?Ernzerhof functionals Phys. Rev. B 1999 59 7413 7421 10.1103/PhysRevB.59.7413 

  67. 67. Klime? J Michaelides A Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory J. Chem. Phys. 2012 137 120901 10.1063/1.4754130 23020317 

  68. 68. Henkelman G Uberuaga BP Jonsson H A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 10.1063/1.1329672 

  69. 69. Henkelman G Jonsson H Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points J. Chem. Phys. 2000 113 9978 9985 10.1063/1.1323224 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로