최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.11 no.1 = v.11, 2020년, pp.6123 -
Jun, Sung-Hoon (Electron Microscopy Research Center, Korea Basic Science Institute, Chungcheongbukdo, 28119 Republic of Korea) , Hyun, Jaekyung (Electron Microscopy Research Center, Korea Basic Science Institute, Chungcheongbukdo, 28119 Republic of Korea) , Cha, Jeong Seok (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea) , Kim, Hoyoung (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea) , Bartlett, Michael S. (Department of Biology, the Portland State University, Portland, OR 97207 USA) , Cho, Hyun-Soo (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea) , Murakami, Katsuhiko S. (Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA)
Opening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary c...
1. Hirata A Klein BJ Murakami KS The X-ray crystal structure of RNA polymerase from Archaea Nature 2008 451 851 854 10.1038/nature06530 18235446
2. Jun SH The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration Nat. Commun. 2014 5 5132 10.1038/ncomms6132 25311937
3. Korkhin Y Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure PLoS Biol. 2009 7 e1000102 10.1371/journal.pbio.1000102 19419240
4. Hahn S Structure and mechanism of the RNA polymerase II transcription machinery Nat. Struct. Mol. Biol. 2004 11 394 403 10.1038/nsmb763 15114340
5. Jun SH Reichlen MJ Tajiri M Murakami KS Archaeal RNA polymerase and transcription regulation Crit. Rev. Biochem. Mol. Biol. 2011 46 27 40 10.3109/10409238.2010.538662 21250781
6. Grunberg S Hahn S Structural insights into transcription initiation by RNA polymerase II Trends Biochem. Sci. 2013 38 603 611 10.1016/j.tibs.2013.09.002 24120742
7. Plaschka C Transcription initiation complex structures elucidate DNA opening Nature 2016 533 353 358 10.1038/nature17990 27193681
8. He Y Near-atomic resolution visualization of human transcription promoter opening Nature 2016 533 359 365 10.1038/nature17970 27193682
9. Murakami K Structure of an RNA polymerase II preinitiation complex Proc. Natl Acad. Sci. USA 2015 112 13543 13548 10.1073/pnas.1518255112 26483468
10. Dienemann C Schwalb B Schilbach S Cramer P Promoter distortion and opening in the RNA polymerase II cleft Mol. Cell 2019 73 97 106.e4 10.1016/j.molcel.2018.10.014 30472190
11. Schulz S TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle Proc. Natl Acad. Sci. USA 2016 113 E1816 E1825 10.1073/pnas.1515817113 26979960
12. Werner F Grohmann D Evolution of multisubunit RNA polymerases in the three domains of life Nat. Rev. Microbiol 2011 9 85 98 10.1038/nrmicro2507 21233849
13. Vannini A Cramer P Conservation between the RNA polymerase I, II, and III transcription initiation machineries Mol. Cell 2012 45 439 446 10.1016/j.molcel.2012.01.023 22365827
14. Sarmiento F Mrazek J Whitman WB Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis Proc. Natl Acad. Sci. USA 2013 110 4726 4731 10.1073/pnas.1220225110 23487778
15. Meinhart A Blobel J Cramer P An extended winged helix domain in general transcription factor E/IIE alpha J. Biol. Chem. 2003 278 48267 48274 10.1074/jbc.M307874200 13679366
16. Grohmann D The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation Mol. Cell 2011 43 263 274 10.1016/j.molcel.2011.05.030 21777815
17. Naji S Grunberg S Thomm M The RPB7 orthologue E’ is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation J. Biol. Chem. 2007 282 11047 11057 10.1074/jbc.M611674200 17311916
18. Hanzelka BL Darcy TJ Reeve JN TFE, an archaeal transcription factor in Methanobacterium thermoautotrophicum related to eucaryal transcription factor TFIIEalpha J. Bacteriol. 2001 183 1813 1818 10.1128/JB.183.5.1813-1818.2001 11160119
19. Grunberg S Bartlett MS Naji S Thomm M Transcription factor E is a part of transcription elongation complexes J. Biol. Chem. 2007 282 35482 35490 10.1074/jbc.M707371200 17921145
20. Kuldell NH Buratowski S Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions Mol. Cell Biol. 1997 17 5288 5298 10.1128/MCB.17.9.5288 9271406
21. Chen HT Warfield L Hahn S The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex Nat. Struct. Mol. Biol. 2007 14 696 703 10.1038/nsmb1272 17632521
22. Grunberg S Warfield L Hahn S Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening Nat. Struct. Mol. Biol. 2012 19 788 796 10.1038/nsmb.2334 22751016
23. Miwa K Crystal structure of human general transcription factor TFIIE at atomic resolution J. Mol. Biol. 2016 428 4258 4266 10.1016/j.jmb.2016.09.008 27639436
24. Walker JE Santangelo TJ Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase Methods 2015 86 73 79 10.1016/j.ymeth.2015.05.023 26028597
25. Mekler V Minakhin L Severinov K A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex J. Biol. Chem. 2011 286 22600 22608 10.1074/jbc.M111.247080 21525530
26. Klein BJ RNA polymerase and transcription elongation factor Spt4/5 complex structure Proc. Natl Acad. Sci. USA 2011 108 546 550 10.1073/pnas.1013828108 21187417
27. Feklistov A Darst SA Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit Cell 2011 147 1257 1269 10.1016/j.cell.2011.10.041 22136875
28. Ryu Y Schultz PG Efficient incorporation of unnatural amino acids into proteins in Escherichia coli Nat. Methods 2006 3 263 265 10.1038/nmeth864 16554830
29. Dorman G Prestwich GD Benzophenone photophores in biochemistry Biochemistry 1994 33 5661 5673 10.1021/bi00185a001 8180191
30. Micorescu M Archaeal transcription: function of an alternative transcription factor B from Pyrococcus furiosus J. Bacteriol. 2008 190 157 167 10.1128/JB.01498-07 17965161
31. Bartlett MS Thomm M Geiduschek EP Topography of the euryarchaeal transcription initiation complex J. Biol. Chem. 2004 279 5894 5903 10.1074/jbc.M311429200 14617625
32. Hirata A Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive Mol. Microbiol 2008 70 623 633 10.1111/j.1365-2958.2008.06430.x 18786148
33. He Y Fang J Taatjes DJ Nogales E Structural visualization of key steps in human transcription initiation Nature 2013 495 481 486 10.1038/nature11991 23446344
34. Hoffmann NA Molecular structures of unbound and transcribing RNA polymerase III Nature 2015 528 231 236 10.1038/nature16143 26605533
35. Kostrewa D RNA polymerase II-TFIIB structure and mechanism of transcription initiation Nature 2009 462 323 330 10.1038/nature08548 19820686
36. Kettenberger H Armache KJ Cramer P Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS Mol. Cell 2004 16 955 965 10.1016/j.molcel.2004.11.040 15610738
37. Feklistov A RNA polymerase motions during promoter melting Science 2017 356 863 866 10.1126/science.aam7858 28546214
38. Boyaci H Chen J Jansen R Darst SA Campbell EA Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding Nature 2019 565 382 385 10.1038/s41586-018-0840-5 30626968
39. Chakraborty A Opening and closing of the bacterial RNA polymerase clamp Science 2012 337 591 595 10.1126/science.1218716 22859489
40. Bae, B. et al. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex. Elife 4 , e08505 (2015).
41. Davis E Chen J Leon K Darst SA Campbell EA Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD Nucleic Acids Res 2015 43 433 445 10.1093/nar/gku1231 25510492
44. Adams PD PHENIX: a comprehensive Python-based system for macromolecular structure solution Acta Crystallogr D. Biol. Crystallogr. 2010 66 213 221 10.1107/S0907444909052925 20124702
45. Emsley P Cowtan K Coot: model-building tools for molecular graphics Acta Crystallogr D. Biol. Crystallogr. 2004 60 2126 2132 10.1107/S0907444904019158 15572765
46. Zheng SQ MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy Nat. Methods 2017 14 331 332 10.1038/nmeth.4193 28250466
47. Zhang K Gctf: Real-time CTF determination and correction J. Struct. Biol. 2016 193 1 12 10.1016/j.jsb.2015.11.003 26592709
48. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5 , e18722 (2016).
49. Tang G EMAN2: an extensible image processing suite for electron microscopy J. Struct. Biol. 2007 157 38 46 10.1016/j.jsb.2006.05.009 16859925
50. Scheres SH Chen S Prevention of overfitting in cryo-EM structure determination Nat. Methods 2012 9 853 854 10.1038/nmeth.2115 22842542
51. Vilas JL MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps Structure 2018 26 337 344.e4 10.1016/j.str.2017.12.018 29395788
52. Afonine PV New tools for the analysis and validation of cryo-EM maps and atomic models Acta Crystallogr D. Struct. Biol. 2018 74 814 840 10.1107/S2059798318009324 30198894
53. Pettersen EF UCSF Chimera―a visualization system for exploratory research and analysis J. Comput Chem. 2004 25 1605 1612 10.1002/jcc.20084 15264254
54. Chen VB MolProbity: all-atom structure validation for macromolecular crystallography Acta Crystallogr D. Biol. Crystallogr 2010 66 12 21 10.1107/S0907444909042073 20057044
55. Dexl S Displacement of the transcription factor B reader domain during transcription initiation Nucleic Acids Res 2018 46 10066 10081 10.1093/nar/gky699 30102372
56. Waege I Schmid G Thumann S Thomm M Hausner W Shuttle vector-based transformation system for Pyrococcus furiosus Appl Environ. Microbiol. 2010 76 3308 3313 10.1128/AEM.01951-09 20363792
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.