$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Variations of Indole Metabolites and NRPS-PKS Loci in Two Different Virulent Strains of Xenorhabdus hominickii 원문보기

Frontiers in microbiology, v.11, 2020년, pp.583594 -   

Mollah, Md. Mahi Imam (Department of Plant Medicals, College of Life Sciences, Andong National University , Andong , South Korea) ,  Roy, Miltan Chandra (Department of Plant Medicals, College of Life Sciences, Andong National University , Andong , South Korea) ,  Choi, Doo-Yeol (Department of Plant Medicals, College of Life Sciences, Andong National University , Andong , South Korea) ,  Hasan, Md. Ariful (Department of Plant Medicals, College of Life Sciences, Andong National University , Andong , South Korea) ,  Al Baki, Md. Abdullah (Department of Plant Medicals, College of Life Sciences, Andong National University , Andong , South Korea) ,  Yeom, Hyun-Suk (Center for Eco-Friendly New Materials, Korea Research Institute of Chemicals Technology , Daejeon , South Korea) ,  Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University , Andong , South Korea)

Abstract AI-Helper 아이콘AI-Helper

Xenorhabdus hominickii ANU1 is known to be an entomopathogenic bacterium symbiotic to nematode Steinernema monticolum. Another bacterial strain X. hominickii DY1 was isolated from a local population of S. monticolum. This bacterial strain X. hominickii DY1 was found to exhibit high insecticidal acti...

Keyword

참고문헌 (64)

  1. Ahmed S. Kim Y. ( 2018 ). Differential immunosuppression by inhibiting PLA2 affects virulence of Xenorhabdus hominickii and Photorhabdus temperata temperata . J. Invertebr. Pathol. 157 136 ? 146 . 10.1016/j.jip.2018.05.009 29802883 

  2. Akhurst R. J. ( 1983 ). Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus . Exp. Parasitol. 55 258 ? 263 . 10.1016/0014-4894(83)90020-6 6832284 

  3. Balcerzak M. ( 1991 ). Comparative studies on parasitism caused by entomogenous nematodes, Steinernema feltiae and Heterorhabditis bacteriophora : I. The roles of the nematode-bacterial complex, and of the associated bacteria alone, in pathogenesis. Acta Parasitol. 36 175 ? 181 . 

  4. Brown S. E. Cao A. T. Dobson P. Hines E. R. Akhurst R. J. East P. D. ( 2006 ). Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Appl. Environ. Microbiol. 72 1653 ? 1662 . 10.1128/AEM.72.2.1653-1662.2006 16461722 

  5. Cai X. Nowak S. Wesche F. Bischoff I. Kaiser M. Furst R. ( 2016 ). Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nat. Chem. 9 379 ? 386 . 10.1038/nchem.2671 28338679 

  6. Casanova-Torres A. M. Shokal U. Morag N. Eleftherianos I. Goodrich-Blair H. ( 2017 ). The global transcription factor Lrp is both essential for and inhibitory to Xenorhabdus nematophila insecticidal activity. Appl. Environ. Microbiol. 83 : e0185-17 . 10.1128/AEM.00185-17 28411220 

  7. Chaston J. M. Suen G. Ticker S. L. Andersen A. Bhasin A. Bode E. ( 2011 ). The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus : convergent lifestyles from divergent genomes. PLoS One 6 : e27909 . 10.1371/journal.pone.0027909 22125637 

  8. Chen G. Maxwell P. Dunphy G. B. Webster J. M. ( 1996 ). Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes. Nematologica 42 124 ? 130 . 10.1163/187529296X00139 

  9. Cho S. Kim Y. ( 2004 ). Hemocyte apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus , in Bombyx mori . J. Asia Pac. Entomol. 7 195 ? 200 . 10.1016/S1226-8615(08)60215-0 

  10. Crawford J. M. Portmann C. Zhang X. Roeffaers M. B. Clardy J. ( 2012 ). Small molecule perimeter defense in entomopathogenic bacteria. Proc. Natl. Acad. Sci. U.S.A. 109 10821 ? 10826 . 10.1073/pnas.1201160109 22711807 

  11. Dunphy G. B. ( 1994 ). Interaction of mutants of Xenorhabdus nematophilus ( Enterobacteriaceae ) with antibacterial systems of Galleria mellonella larvae (Insecta: Pyralidae). Can. J. Microbiol. 40 161 ? 168 . 10.1139/m94-028 8012904 

  12. Eden P. A. Schmidt T. M. Blakemore R. P. Pace N. R. ( 1991 ). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Evol. Microbiol. 41 324 ? 325 . 10.1099/00207713-41-2-324 1854644 

  13. Ellis R. E. Sulston J. E. Coulson A. R. ( 1986 ). The rDNA of C. elegans : sequence and structure. Nucl. Acids Res. 14 2345 ? 2364 . 10.1093/nar/14.5.2345 3960722 

  14. Forst S. Clarke D. ( 2002 ). “ Bacteria-nematode symbioses ,” in Entomopathogenic Nematology , ed. Gaugler R. ( Wallingford : CABI Publishing ), 57 ? 77 . 10.1079/9780851995670.0057 

  15. Goh H. G. Lee S. G. Lee B. P. Choi K. M. Kim J. H. ( 1990 ). Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29 180 ? 183 . 

  16. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41 95 ? 98 . 

  17. Hasan M. A. Ahmed S. Mollah M. M. I. Lee D. Kim Y. ( 2019 ). Variation in pathogenicity of different strains of Xenorhabdus nematophila : differential immunosuppressive activities and secondary metabolite production. J. Invertebr. Pathol. 166 : 107221 . 10.1016/j.jip.2019.107221 31356819 

  18. Hemalatha D. Prabhu S. Rani W. B. Anandham R. ( 2018 ). Isolation and characterization of toxins from Xenorhabdus nematophilus against Ferrisia virgata (Ckll.) on tuberose, Polianthes tuberosa . Toxicon. 146 42 ? 49 . 10.1016/j.toxicon.2018.03.012 29596848 

  19. Herbert E. E. Goodrich-Blair H. ( 2007 ). Friend and Foe: the two faces of Xenorhabdus nematophila . Nat. Rev. Microbiol. 5 634 ? 646 . 10.1038/nrmicro1706 17618298 

  20. Jung J. K. Seo B. Y. Cho C. R. Kwon Y. H. Kim G. H. ( 2009 ). Occurrence of lepidopteran insect pests and injury aspects in Adzuki bean fields. Korean J. Appl. Entomol. 48 29 ? 35 . 10.5656/KSAE.2009.48.1.029 

  21. Kang S. Han S. Kim Y. ( 2005 ). Identification and pathogenic characteristics of two Korean isolates of Heterorhabditis megidis . J. Asia Pac. Entomol. 8 411 ? 418 . 10.1016/S1226-8615(08)60264-2 

  22. Kim Y. Ahmed S. Stanley D. An C. ( 2018 ). Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83 130 ? 143 . 10.1016/j.dci.2017.12.005 29225005 

  23. Kopp F. Marahiel M. A. ( 2007 ). Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 24 735 ? 749 . 10.1039/b613652b 17653357 

  24. Koppenhofen H. S. Gaugler R. ( 2009 ). “ Entomopathogenic nematode and bacteria mutualism ,” in Defensive Mutualism in Microbial Symbiosis , eds White J. Torres M. ( Boca Raton, FL : CRC Press ), 99 ? 116 . 10.1201/9781420069327.ch7 

  25. Krieg N. R. Hart J. G. ( 1984 ). Bergey’s Manual of Systematic Bacteriology , Vol. 1 New York, NY : Springer-Verlag , 506 ? 512 . 

  26. Kucera M. Mracek Z. ( 1989 ). Proteolytic enzymes of the invasive larvae of entomopathogenic steinernematid nematodes. Acta Entomol. Serbica 86 193 ? 201 . 

  27. Kumari P. Kant S. Zaman S. Mahapatro G. K. Banerjee N. Sarin N. B. ( 2014 ). A novel insecticidal GroEL protein from Xenorhabdus nematophila confers insect resistance in tobacco. Transgenic Res. 23 99 ? 107 . 10.1007/s11248-013-9734-3 23888329 

  28. Lee S. Kim Y. Han S. ( 2000 ). An improved collecting method of the infective juveniles of the entomopathogenic nematode, Steinernema carpocapsae Weiser. Korean J. Soil Zool. 5 97 ? 100 . 

  29. Liu C. Masri J. Perez V. Maya C. Zhao J. ( 2020 ). Growth performance and nutrient composition of mealworms ( Tenebrio molitor ) fed on fresh plant materials-supplemented diets. Foods 9 1 ? 10 . 10.3390/foods9020151 32033344 

  30. Livak K. J. Schimittgen T. D. ( 2001 ). Analysis of relative gene expression data using real-time quantitative PCR and the 2 ?ΔΔ CT method. Methods 25 402 ? 408 . 10.1006/meth.2001.1262 11846609 

  31. Mclnerny B. V. Taylor W. C. Lacey M. J. Akhurst R. J. Gregson R. P. ( 1991 ). Biologically active metabolites from Xenorhabdus spp. II. Benzopyran-I-one derivatives with gastro-protective activity. J. Nat. Prod. 54 785 ? 795 . 10.1021/np50075a006 1955881 

  32. Morgan J. A. W. Sergeant M. Ellis D. Ousley M. Jarrett P. ( 2001 ). Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl. Environ. Microbiol. 67 2062 ? 2069 . 10.1128/AEM.67.5.2062-2069.2001 11319082 

  33. Nollmann F. I. Heinrich A. K. Brachmann A. O. Morrisseau C. Mukherjee K. Casanova Torres A. M. ( 2015 ). A Photorhabdus natural product inhibits insect juvenile hormone epoxide hydrolase. Chembiochem 16 766 ? 771 . 10.1002/cbic.201402650 25711603 

  34. Park Y. Herbert E. E. Cowles C. E. Cowles K. N. Menard M. L. Orchard S. S. ( 2007 ). Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Cell. Microbiol. 9 645 ? 656 . 10.1111/j.1462-5822.2006.00815.x 17002783 

  35. Park Y. Kang S. Sadekuzzaman M. Kim H. Jung J. K. Kim Y. ( 2017 ). Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum . J. Invertebr. Pathol. 144 74 ? 87 . 10.1016/j.jip.2017.02.002 28193447 

  36. Park Y. Kim Y. ( 2000 ). Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus , the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae . J. Insect Physiol. 46 1469 ? 1476 . 10.1016/S0022-1910(00)00071-8 10891575 

  37. Park Y. Kim Y. Yi Y. Han S. ( 1998 ). Optimal storage conditions of the entomopathogenic nematode, Steinernema carpocapsae . Korean J. Appl. Entomol. 3 10 ? 16 . 

  38. Paul V. J. Frautschy S. Fenical W. Nealson K. H. ( 1981 ). Antibiotics in microbial ecology: isolation and structure assignment of several new antibacterial compounds from the insect-symbiont bacteria Xenorhabdus spp. J. Chem. Ecol. 7 589 ? 598 . 10.1007/BF00987707 24420598 

  39. Payelleville A. Lanois A. Gislard M. Dubois E. Roche D. Cruveiller S. ( 2017 ). DNA adenine methyltransferase (Dam) overexpression impairs Photorhabdus luminescens motility and virulence. Front. Microbiol. 8 : 1671 . 10.3389/fmicb.2017.01671 28919886 

  40. Popiel I. Grove D. L. Friedman M. J. ( 1989 ). Infective juvenile formation in the insect parasitic nematode Steinernema feltiae . Parasitology 99 77 ? 81 . 10.1017/S0031182000061047 

  41. Richardson W. H. Schmidt T. M. Nealson K. H. ( 1988 ). Identification of an antraquinone pigment and a hydroxostilbene antibiotic from Xenorhabdus luminescens . Appl. Environ. Microbiol. 54 1602 ? 1609 . 10.1128/AEM.54.6.1602-1605.1988 3415225 

  42. Sajjadian S. M. Kim Y. ( 2020 ). Dual oxidase-derived reactive oxygen species against Bacillus thuringiensis and its suppression by eicosanoid biosynthesis inhibitors. Front. Microbiol. 11 : 528 . 10.3389/fmicb.2017.00528 28424671 

  43. SAS Institute Inc ( 1989 ). SAS/STAT User’s Guide, Release 6.03. Cary, NC : SAS Institute Inc . 

  44. Seinhorst J. W. ( 1959 ). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4 67 ? 69 . 10.1163/187529259X00381 

  45. Seo S. Lee S. Hong Y. Kim Y. ( 2012 ). Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata . Appl. Environ. Microbiol. 78 3816 ? 3823 . 10.1128/AEM.00301-12 22447611 

  46. Sergeant M. Baxter L. Jarrett P. Shaw E. Ousley M. Winstanley C. ( 2006 ). Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl. Environ. Microbiol. 72 5895 ? 5907 . 10.1128/AEM.00217-06 16957209 

  47. Shi Y. M. Bode H. B. ( 2018 ). Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat. Prod. Rep. 35 309 ? 335 . 10.1039/C7NP00054E 29359226 

  48. Shrestha S. Kim Y. ( 2007 ). An entomopathogenic bacterium, Xenorhabdus nematophila , inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A2. J. Invertebr. Pathol. 96 64 ? 70 . 10.1016/j.jip.2007.02.009 17395196 

  49. Snyder H. Stock S. P. Kim S. K. Flores-Lara Y. Forst S. ( 2007 ). New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae . Appl. Environ. Microbiol. 73 5338 ? 5346 . 10.1128/AEM.02947-06 17526783 

  50. Stock P. Goodrich-Blair H. ( 2008 ). Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis 46 65 ? 75 . 

  51. Stock S. P. Choo H. Y. Kaya H. K. ( 1997 ). An entomopathogenic nematode, Steinernema monticolum sp. n. (Rhabditida: Steinernematidae) from Korea with a key to other species. Nematologica 43 15 ? 29 . 10.1163/004725997X00025 

  52. Sundar L. Chang F. N. ( 1993 ). Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus . J. Gen. Microbiol. 129 3139 ? 3149 . 10.1099/00221287-139-12-3139 7510325 

  53. Sussmuth R. D. Mainz A. ( 2017 ). Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Edn. Engl. 56 3770 ? 3821 . 10.1002/anie.201609079 28323366 

  54. Tamura K. Stecher G. Peterson D. Filipski A. Kumar S. ( 2013 ). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Zool. 30 2725 ? 2729 . 10.1093/molbev/mst197 24132122 

  55. Thomas G. M. Poinar G. O. ( 1979 ). Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae . Int. J. Syst. Evol. Microbiol. 29 352 ? 360 . 10.1099/00207713-29-4-352 

  56. Tobias N. J. Shi Y. M. Bode H. B. ( 2018 ). Refining the natural product repertoire in entomopathogenic bacteria. Trends Microbiol. 26 833 ? 840 . 10.1016/j.tim.2018.04.007 29801772 

  57. Tobias N. J. Wolff H. Djahanschiri B. Grundmann F. Kronenwerth M. Shi Y. M. ( 2017 ). Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus . Nat. Microbiol. 2 1676 ? 1685 . 10.1038/s41564-017-0039-9 28993611 

  58. Vatanparast M. Ahmed S. Herrero S. Kim Y. ( 2018 ). A non-venomous sPLA2 of a lepidopteran insect: its physiological functions in development and immunity. Dev. Comp. Immunol. 89 83 ? 92 . 10.1016/j.dci.2018.08.008 30107251 

  59. Vigneux F. Zumbihl R. Jubelin G. Ribeiro C. Poncet J. Baghdiguian S. ( 2007 ). The XaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J. Biol. Chem. 282 9571 ? 9580 . 10.1074/jbc.M604301200 17229739 

  60. Vrain T. C. Wakarchuk D. A. Levesque A. C. Hamilton R. I. ( 1992 ). Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund. Appl. Nematol. 15 563 ? 574 . 

  61. Walsh C. T. ( 2008 ). The chemical versatility of natural-product assembly lines. Acc. Chem. Res. 41 4 ? 10 . 10.1021/ar7000414 17506516 

  62. Walsh C. T. Chen H. Keatin T. A. Hubbard B. K. Losey H. C. Luo L. ( 2001 ). Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr. Opin. Chem. Biol. 5 525 ? 534 . 10.1016/S1367-5931(00)00235-0 11578925 

  63. Weissman K. J. Leadlay P. F. ( 2005 ). Combinatorial biosynthesis of reduced polyketides. Nat. Rev. Microbiol. 3 925 ? 932 . 10.1038/nrmicro1287 16322741 

  64. Yang Q. Zhang J. Li T. Liu S. Song P. Nangong Z. ( 2017 ). PirAB protein from Xenorhabdus nematophila HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in Galleria mellonella . J. Invertebr. Pathol. 148 43 ? 50 . 10.1016/j.jip.2017.04.007 28438456 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로