$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO2 Reduction into Ethanol

ACS catalysis, v.11, 2021년, pp.5658 - 5665  

Kim, Ju Ye (Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Park, Woonghyeon (Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Choi, Changhyeok (Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Kim, Gukbo (Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Cho, Kyeong Min (Department of Chemical and Biomolecular Engineering (BK-21 Plus) , Korea Advanced Institute of Science and Technology (KAIST) ,) ,  Lim, Jinkyu ,  Kim, Seon Joon ,  Al-Saggaf, Ahmed ,  Gereige, Issam ,  Lee, Hyunjoo ,  Jung, Woo-Bin ,  Jung, Yousung ,  Jung, Hee-Tae

Abstract AI-Helper 아이콘AI-Helper

Achieving high electrochemical conversion of carbon dioxide (CO2) into valuable fuels and chemicals is one of the most promising directions to address environmental and energy challenges. Although several single-crystal based studies and simulation results have reported that rich in steps on Cu (100...

Keyword

참고문헌 (39)

  1. Appel, Aaron M., Bercaw, John E., Bocarsly, Andrew B., Dobbek, Holger, DuBois, Daniel L., Dupuis, Michel, Ferry, James G., Fujita, Etsuko, Hille, Russ, Kenis, Paul J. A., Kerfeld, Cheryl A., Morris, Robert H., Peden, Charles H. F., Portis, Archie R., Ragsdale, Stephen W., Rauchfuss, Thomas B., Reek, Joost N. H., Seefeldt, Lance C., Thauer, Rudolf K., Waldrop, Grover L.. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chemical reviews, vol.113, no.8, 6621-6658.

  2. Qiao, Jinli, Liu, Yuyu, Hong, Feng, Zhang, Jiujun. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society reviews, vol.43, no.2, 631-675.

  3. Kuhl, Kendra P., Cave, Etosha R., Abram, David N., Jaramillo, Thomas F.. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & environmental science, vol.5, no.5, 7050-7059.

  4. Raciti, David, Wang, Chao. Recent Advances in CO2 Reduction Electrocatalysis on Copper. ACS energy letters, vol.3, 1545-1556.

  5. Montoya, Joseph H., Peterson, Andrew A., Nørskov, Jens K.. Insights into CC Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem, vol.5, no.3, 737-742.

  6. Loiudice, Anna, Lobaccaro, Peter, Kamali, Esmail A., Thao, Timothy, Huang, Brandon H., Ager, Joel W., Buonsanti, Raffaella. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. Angewandte Chemie. international edition, vol.55, no.19, 5789-5792.

  7. Reske, Rulle, Mistry, Hemma, Behafarid, Farzad, Roldan Cuenya, Beatriz, Strasser, Peter. Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles. Journal of the American Chemical Society, vol.136, no.19, 6978-6986.

  8. Roberts, F. Sloan, Kuhl, Kendra P., Nilsson, Anders. High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts. Angewandte Chemie, vol.127, no.17, 5268-5271.

  9. Dutta, Abhijit, Rahaman, Motiar, Mohos, Miklos, Zanetti, Alberto, Broekmann, Peter. Electrochemical CO2 Conversion Using Skeleton (Sponge) Type of Cu Catalysts. ACS catalysis, vol.7, no.8, 5431-5437.

  10. Wang, Zhenni, Yang, Guang, Zhang, Zhaorui, Jin, Mingshang, Yin, Yadong. Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO2 Electrochemical Reduction. ACS nano, vol.10, no.4, 4559-4564.

  11. Ma, Ming, Djanashvili, Kristina, Smith, Wilson A.. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. Angewandte Chemie. international edition, vol.55, no.23, 6680-6684.

  12. Feng, Xiaofeng, Jiang, Kaili, Fan, Shoushan, Kanan, Matthew W.. A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS central science, vol.2, no.3, 169-174.

  13. Verdaguer-Casadevall, Arnau, Li, Christina W., Johansson, Tobias P., Scott, Soren B., McKeown, Joseph T., Kumar, Mukul, Stephens, Ifan E. L., Kanan, Matthew W., Chorkendorff, Ib. Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. Journal of the American Chemical Society, vol.137, no.31, 9808-9811.

  14. Li, Christina W., Kanan, Matthew W.. CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. Journal of the American Chemical Society, vol.134, no.17, 7231-7234.

  15. Hori, Y., Takahashi, I., Koga, O., Hoshi, N.. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of molecular catalysis. A, Chemical, vol.199, no.1, 39-47.

  16. Chen, Chung Shou, Handoko, Albertus D., Wan, Jane Hui, Ma, Liang, Ren, Dan, Yeo, Boon Siang. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catalysis science & technology, vol.5, no.1, 161-168.

  17. Duan, Yan‐Xin, Meng, Fan‐Lu, Liu, Kai‐Hua, Yi, Sha‐Sha, Li, Si‐Jia, Yan, Jun‐Min, Jiang, Qing. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies. Advanced materials, vol.30, no.14, 1706194-.

  18. Yu, Jingxue, Li, Jie, Zhang, Wenfeng, Chang, Haixin. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical science, vol.6, no.12, 6705-6716.

  19. Kim, Dae Woo, Kim, Yun Ho, Jeong, Hyeon Su, Jung, Hee-Tae. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nature nanotechnology, vol.7, no.1, 29-34.

  20. Choi, Hyung Ouk, Kim, Dae Woo, Kim, Seon Joon, Yang, Seung Bo, Jung, Hee‐Tae. Role of 1D Metallic Nanowires in Polydomain Graphene for Highly Transparent Conducting Films. Advanced materials, vol.26, no.26, 4575-4581.

  21. Li, Xuesong, Cai, Weiwei, Colombo, Luigi, Ruoff, Rodney S.. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.12, 4268-4272.

  22. Lee, Hyo Chan, Jo, Sae Byeok, Lee, Eunho, Yoo, Min Seok, Kim, Hyun Ho, Lee, Seong Kyu, Lee, Wi Hyoung, Cho, Kilwon. Facet‐Mediated Growth of High‐Quality Monolayer Graphene on Arbitrarily Rough Copper Surfaces. Advanced materials, vol.28, no.10, 2010-2017.

  23. Ogurtani, Omer Tarik, Senyildiz, Dogukan, Cambaz Buke, Goknur. Wrinkling of graphene because of the thermal expansion mismatch between graphene and copper. Surface and interface analysis : SIA, vol.50, no.5, 547-551.

  24. Deng, S., Berry, V.. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Materials today, vol.19, no.4, 197-212.

  25. Wu, Mihye, Kim, Ju Ye, Chae, Oh B., Jung, Woo-Bin, Choi, Sungho, Kim, Do Youb, Suk, Jungdon, Gereige, Issam, Kang, Yongku, Jung, Hee-Tae. Nanoscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium Batteries. ACS applied materials & interfaces, vol.13, no.2, 2576-2583.

  26. Wang, Yu, Zheng, Yi, Xu, Xiangfan, Dubuisson, Emilie, Bao, Qiaoliang, Lu, Jiong, Loh, Kian Ping. Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst. ACS nano, vol.5, no.12, 9927-9933.

  27. Lanza, M., Wang, Y., Bayerl, A., Gao, T., Porti, M., Nafria, M., Liang, H., Jing, G., Liu, Z., Zhang, Y., Tong, Y., Duan, H.. Tuning graphene morphology by substrate towards wrinkle-free devices: Experiment and simulation. Journal of applied physics, vol.113, no.10, 104301-.

  28. Li, Xuesong, Cai, Weiwei, An, Jinho, Kim, Seyoung, Nah, Junghyo, Yang, Dongxing, Piner, Richard, Velamakanni, Aruna, Jung, Inhwa, Tutuc, Emanuel, Banerjee, Sanjay K., Colombo, Luigi, Ruoff, Rodney S.. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, vol.324, no.5932, 1312-1314.

  29. Jung, Woo-Bin, Cho, Kyeong Min, Lee, Won-Kyu, Odom, Teri W., Jung, Hee-Tae. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces. ACS applied materials & interfaces, vol.10, no.1, 1347-1355.

  30. Jung, Woo-Bin, Yun, Geun-Tae, Kim, Yesol, Kim, Minki, Jung, Hee-Tae. Relationship between Hydrogen Evolution and Wettability for Multiscale Hierarchical Wrinkles. ACS applied materials & interfaces, vol.11, no.7, 7546-7552.

  31. Gao, Dunfeng, Zegkinoglou, Ioannis, Divins, Nuria J., Scholten, Fabian, Sinev, Ilya, Grosse, Philipp, Roldan Cuenya, Beatriz. Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols. ACS nano, vol.11, no.5, 4825-4831.

  32. Garza, Alejandro J., Bell, Alexis T., Head-Gordon, Martin. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS catalysis, vol.8, no.2, 1490-1499.

  33. Hori, Yoshio, Murata, Akira, Takahashi, Ryutaro. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, I, Faraday transactions, vol.85, no.8, 2309-2326.

  34. Huang, Yun, Ong, Cheng Wai, Yeo, Boon Siang. Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces. ChemSusChem, vol.11, no.18, 3299-3306.

  35. Clark, Ezra L., Ringe, Stefan, Tang, Michael, Walton, Amber, Hahn, Christopher, Jaramillo, Thomas F., Chan, Karen, Bell, Alexis T.. Influence of Atomic Surface Structure on the Activity of Ag for the Electrochemical Reduction of CO2 to CO. ACS catalysis, vol.9, no.5, 4006-4014.

  36. Bagger, Alexander, Ju, Wen, Varela, Ana Sofia, Strasser, Peter, Rossmeisl, Jan. Electrochemical CO2 Reduction: Classifying Cu Facets. ACS catalysis, vol.9, no.9, 7894-7899.

  37. Nie, Xiaowa, Esopi, Monica R., Janik, Michael J., Asthagiri, Aravind. Selectivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps. Angewandte Chemie. international edition, vol.52, no.9, 2459-2462.

  38. Luo, Wenjia, Nie, Xiaowa, Janik, Michael J., Asthagiri, Aravind. Facet Dependence of CO2 Reduction Paths on Cu Electrodes. ACS catalysis, vol.6, no.1, 219-229.

  39. 10.1002/9781118892114 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로